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_SECTION 1
INTRODUCTION

Neural network models are highly parallel alternatives to conventional methods of
computation for solving such ill-structured problems as pattern recognition or robotic control.
Their architecture resembles that of biological nervous systems, which solve such problems so
efficiently. Sophisticated neural network models and training procedures have evolved, since the
pioneering work of the 1940s. Even so, neural network models have not yet convincingly
demonstrated their superiority over the algorithm-oriented approaches of artificial intelligence or
classical statistical techniques. Widespread application of neural network technology depends on
advances in both theoretical understanding and the development of computing platforms explicitly
designed for the parallel implementation of such models. Those areas of research naturally interact
and complement each other. For example, scaleup and convergence issues can be studied both
theoretically and by actual operation of neural networks.

In the 1988-1989 contract period, we addressed the need for hardware realizations of neural
networks by implementing a hybrid optoelectronic architecture. The massive parallelism of neural
network models that makes them run very inefficiently on serial machines also allows them to be
implemented very efficiently on parallel optical machines. The potential speedup factors are high.

Our approach is a direct analog realization of neural network models in which a physical node
is dedicated to representing each "neuron," or processing element. By not having to multiplex
neurons among physical nodes and by simultaneously updating all weights between two layers,
using optics, we achieve very large throughputs with large numbers of relatively slow processors,
as in biological nervous systems. The stimulated photorefractive optical neural network
(SPONN), developed under this contract in 1988-1989, is a fine-grained optoelectronic
architecture characterized by massive parallelism and much greater connectivity than is possible in
electronic approaches.

SPONN is capable of implementing neural network models comprising 105 neurons with
1010 interconnections. SPONN's optical architecture is inherently suited to the mapping of
multilayer neural network models; moreover, it is easily programmable. Its weight updating rate is
independent of the number of neurons. In contrast, most electronic approaches must deal with data
routing and contention problems arising from the limited connectivity of electronic structures, and
therefore depend strongly on the number of neurons and their interconnections.

In SPONN, neurons are implemented as pixels on a two-dimensional spatial light modulator
(SLM) and interconnection weights are established holographically as gratings in photorefractive
crystals. A unique feature is our use of a continuum of spatially and angularly distribuied gratings
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to represent each weight, rather than the single grating employed by prior holographic optical
neural networks. Multiple gratings eliminate the zmbiguous readout of gratings and the crosstalk
that results from the angular degeneracy of the Bragg condition for diffraction from a volume
grating. Our new technique eliminates the need for subsampling the input/output planes and
therefore permits full utilization of the SLM space-bandwidth product for representing neurons,
unlike other holographic approaches. We can implement multilayer neural network models using a
single photorefractive crystal and SLM, which produces a compact modular system.

The continuum of gratings is generated by focusing the input plane into a self-pumped or
mutually-pumped phase-conjugate mirror (PCM). Stimulated photorefractive processes in the
PCM cause each pixel in the input plane to form connections with all other pixels via distributed
volume gratings. Moreover, the gratings arrange themselves to redistribute the incident light into a
phase-conjugate ontput wavefront that is a time-reversed version of the input light. Such self-
organization yields a fully parallel and massively interconnected physical system that is an ideal
implementation medium for neural network models. The distributed gratings in the PCM both
store the weights and route the optical beams. '

An important feature of SPONN is its hybridization of optics and electronics. It combi .s
the large storage capacity, parallelism, and connectivity of optical structures with the easy
programmability and controllable nonlinearity of electronic structures. A video frame grabber in
conjunction with the host computer carries out the nonlinear neuron activation functions with
minimal computational overhead. We can implement multilayer neural networks by spatially
segregating the input and output planes. Unlike all-optical neural networks, SPONN can be easily
and reproducibly controlled.
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. SECTION 2
VOLUME HOLOGRAM IMPLEMENTATIONS OF NEURAL NETWORKS

Volume holograms offer two features required by neural networks: enormous storage
capacity and fully parallel processing of the stored interconnection weight values. In such an
optical neural network, neurons are represented by pixels on two-dimensional SLMs. Pixel
brightness corresponds to the activation level of the neuron. When the SLM is placed in the back
focal plane of a lens and coherent readout is used, the light emitted by the pixels is converted to
coherent beams that illuminate a real-time holographic medium.

In this report, we represent each light beam by a momentum or k vector. (The direction of
the k vector corresponds to the direction of propagation,; its magnitude is the inverse of the optical
wavelength in the holographic medium.) Interconnection weights between neurons are established
when a pair of light beams interfere in the holographic medium, producing a volume sinusoidal
light-intensity pattern that in‘eracts with the medium. The photorefractive effect is a suitable
physical mechanism for converting the light-intensity pattern into a semipermanent deformation of
the optical properties of the material, thus recording the weight values.

In the photorefractive effect, incident light excites carriers (electrons, holes) from traps into
the conduction or valence band. The carriers are then transported by diffusion and drift until they
fall into empty traps, thereby creating an internal space-charge field that in tun modulates the
birefingence of the material through the electro-optic effect.] Because of the long dark-decay times
of some photorefractive materials, the resultant phase gratings can be stored with a time constant of
many hours.2 (Storage for longer periods is also possible using various hologram-fixing methods,
discussed below in subsection 3.7.)

When one of the original two beams subsequently addresses the grating, the other beam is
reconstructed with a diffraction efficiency that represents the interconnection weight value between
the two neurons. In general, reading out the grating partially erases it unless the readout beam is
much weaker than the original writing light or the crystal is fixed by means of special techniques.
Such light sensitivity allows us to implement learning in our photorefractive optical neural

network, since we can selectively decrease as well as increase the weights. Photorefractive
materials and their application in optical data processing is an active area of research at HRL.

The physical mechanism that allows large numbers of gratings to be stored in a
photorefractive crystal is described by the Bragg condition for constructive scattering off a volume
grating: a beam will be reconstructed only if its angle of incidence is approximately equal to that of
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the original writing beam. The angular selectivity for reconstruction can be derived from coupled
mode theory.3 It is given by

AQ=—RA
nTysin(¢)

where A is the optical wavelength, n is the index of refraction of the photorefractive crystal, Ty is
the hologram thickness, and ¢ is the mean angle between the reference and object beamlets. The
angular selectivity is greater for thicker crystals. Phase matching arguments permit the Bragg
condition to be described geometrically as a vector sum: Kj + Kg = K|, where Kj and K; are the
wave vectors of the incident and diffracted beams, respectively, and Ky is the grating wave vector.
Figure 1 illustrates a holographic interconnection between two optical neurons, with Figure 1(a)
showing how holographic gratings form an outer-product or Hebbian interconnection matrix and
Figure 1(b) describing the Bragg condition geometrically.

A geometric construction for the theoretical maximum storage capacity of a volume hologram
can be drawn in k space, as shown in Figure 2. If the first writing beam varies over solid angle
8o whereas the second writing beam varies over angle 6y, then the vector difference between the
two beams (the grating wave vector Kg) will trace out a three-dimensional region in k space. The
volume of the region depends on such geometric factors as the focal lengths of the optics and the
spacing of the neurons on the SLMs.

The grating wave vector Kg has an uncertaiaty volume associated with it because of the lens
aperture, the finite physical size of the hologram, and the nonzero size of the SLM pixels.
Dividing the accessible volume of k space by the value of the uncertainty volume yields the
maximum theoretical number of resolvable gratings or weights that can be stored in the
photorefractive crystal. For a 1-cm3 crystal, the theoretical upper limit is 1010 weights, assuming
currently available SLM resolution and reasonable optics. That number of weights is sufficient to
form a fully interconnected network of 105 neurons. Partially interconnected networks with more
neurons can also be accommodated. Moreover, the entire neural network can be read out or
updated in parallel without the time-multiplexing, data-contention, or bottleneck problems common
in electronic implementations. The great storage cap- ity is a direct result of the three-dimensional
nature of optical holographic storage.?
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the original writing beam. The anguilar selectivity for reconstruction can be derived from coupled
mode theory.3 Itis given by

AG=—RA
nT,sin($)

where A is the optical wavelength, n is the index of refraction of the photorefractive crystal, T is
the hologram thickness, and ¢ is the mean angle between the reference and object beamlets. The
angular selectivity is greater for thicker crystals., Phase matching arguments permit the Bragg
condition to be described geometrically as a vector sum: Kj + Kg = Kj, where Kj and K; are the
wave vectors of the incident and diffracted beams, respectively, and Ky is the grating wave vector.
Figure 1 illustrates a holographic interconnection between two optical neurons, with Figure 1(a)
showing how holographic gratings form an outer-product or Hebbian interconnection matrix and
Figure 1(b) describing the Bragg condition geometrically.

A geometric construction for the theoretical maximum storage capacity of a volume hologram
can be drawn in k space, as shown in Figure 2. If the first writing beam varies over solid angle
0, whereas the second writing beam varies over angle 6, then the vector difference between the
two beams (the grating wave vector Kg) will trace out a three-dimensional region in k space. The
volume of the region depends on such geometric factors as the focal lengths of the optics and the
spacing of the neurons on the SLMs.

The grating wave vector Kg has an uncertaiaty volume associated with it because of the lens
aperture, the finite physical size of the hologram, and the nonzero size of the SLM pixels.
Dividing the accessible volume of k space by the value of the uncertainty volume yields the
maximum theoretical number of resolvable gratings or weights that can be stored in the
photorefractive crystal. For a 1-cm3 crystal, the theoretical upper limit is 1010 weights, assuming
currently available SLM resolution and reasonable optics. That number of weights is sufficient to
form a fully interconnected network of 10 neurons. Partially interconnected networks with more
neurons can also be accommodated. Moreover, the entire neural network can be read out or
updated in parallel without the time-multiplexing, data-contention, or bottleneck problems common
in electronic implementations. The great storage cap- .ity is a direct result of the three-dimensional
nature of optical holographic storage.
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Figure 2. Region of k space used for information storage in optical neural network based on
volume hologram.
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™» hallenge is to devise practicai neural network systems able to approach the theoretical
limit. Perhaps the most important obstacle is the degenerate nature of the Bragg conditica, which
states that the angle of incidence of a light beam relative to a volume grating must match that of the
original writing beam in order for its associated beam to be reconstructed. However, that conditiun
is satisfied by a set of beams whose k vectors form a cone normal to the grating, as shown by
Figure 3. Therefore, a large set of beams other than the original beam can constructively scatter
off the grating, forming erroneous reconstructions and crosstalk. Two methods for avoiding the
problem have been suggested in the literature: subsampling of the SLMs and spatial multiplexing
of holograms. However, both methods are problematic.

In the subsampling method, neurons are arranged in special nonredundant patterns on the
SLMs, and output planes are sampled only at certain locations. Thus, though false reconstructions
still occur, they do not contribute to the output. The special patterns can consist of fractal grids® or
a combination of one- and two-dimensional sampling.6 If the SLMs are capable of displaying
NxN neurons, then this method can implement a total of N3/2 neurons and N3 weights. The
storage capacities of both the crystal and the SLMs thus have the same functional dependence on
dimensional scaling (ignoring limiting effects due to nonzero SLM pixel size).

However, the subsampling method does not allow the SLM space-bandwidth product to be
fully utilized for representing neurons. That is a major drawback. As discussed above, the storage
capacity of a 1-cm3 crystal should be sufficient to store the interconnections for an NxN array of
neurons where N = 500, which matches the capabilities of current SLMs such as the HRL liquid
crystal light valve (LCLV). Unfortunately, because of the subsampling, only N3/2 neurons can be
implemented even though the SLM is capable of displaying N2 neurons. Since N = 500, the
neuron and weight storage capacity/throughput are reduced by factors of 22 and 500, respectively,
from the theoretical maximums for current SLMs. The light efficiency is also low because some of
the light is diffracted to dead areas due to the Bragg ambiguity.

The spatial multiplexing method avoids the Bragg ambiguity problem by physically dividing
the crystal into separate volumes for each weight. However, such divisions effectively reduce the
storage capacity to the low level of a two-dimensional hologram. i

Figure 4 shows the general architecture of a subsampling photorefractive optical neural
network. Pixels in the object and reference planes represent individual neurons. The neurons are
optically interconnected by coherent light beams diffracted from volume phase gratings, which are
stored in a photorefractive crystal and which control the strength and phase of the interconnection
weights. The object and reference planes are physically located on the output faces of CRT-
addressed LCLVs that modulate incident, collimated coherent light beams, resulting in the
reflection of diverging beamlets of light from each neuron. The amplitude of each beamlet is
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Figure 3.  Geometric construction of Bragg ambiguity in single-grating-per-weight storage.
Many wave-vector pairs can read out each grating, but this architecture restricts the
arrangement of neurons on the SLM.
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controlled by the activation level of the neuron. The object and reference beamlets are collimated
by two lenses of focal length F. The collimated object and reference beamlets are incident on the
photorefractive crystal, where they interfere to form volume gratings and thus determine the
interconnection weights. Such holographic gratings form an outer-product or Hebbian
interconnection matrix [see Figure 1(a)] between the object and reference planes. Positive,
negative, or complex contributions to the interconnection weights can be implemented using two
exposure stages, with different phases of the LCLV readout light.

During readout, light from a particular neuron is diffracted from a photorefractive grating,
sampled by a beam splitter, and focused onto a detector plane, which can be a charge-coupled
device (CCD) or vidicon video camera. The object/reference detector planes are then optically or
electronically mapped onto the object/reference neuron planes.

Reflection holograms would be formed, as in Figure 4. That result is usually undesirable
because she diffracted light from the reference plane would not propagate in the desired directic a to
reconstruct the object plane. However, an additional component, a phase-conjugate mirror, can be
introduced to phase-conjugate the light from the reference plane after it passes through the
hologram. The reference and object beamlets then form a transmission hologram that in turn
produces a real image of the object plane when the hologram is illuminated with light from the
reference plane. Using a PCM to allow a single SLM to both expose and read gratings in an
optical neural network was first suggested by Wagner and Psaltis.

The projected performance of the subsampled system can be estimated by analyzing the type
and amount of light. Three quantities of interest can be defined: N, the total number of neurons;
Nconns the total number of interconnections; and R, the interconnection updating rate. N is simply
given by the LCLYV active area divided by the square of the neuron separation:

_ ™(D/2)?

N
(Ax)”

where D is the diameter of the LCLV active area and Ax is the neuron separation, which is
determined by the angular selectivity of the volume hologram, A9, and the focal length F:

Ax = 2FA0

where the expression for AG was given previously. Combining the above expressions results in

10
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n(D/2)?

N =
(Ax)’

where D is the diameter of the LCLV active area and Ax is the neuron separation, which is
determined by the angular selectivity of the volume hologram, A®, and the focal length F:

Ax = 2FAO

where the expression for AG was given previously. Combining the above expressions results in
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Substituting all of the above expressions into R’ = N¢onn/tE results in a final expression that
contains only the independent pararneters of the system:

: 3
R = 8.7x107%d% . uron (DnTzsm(q))\] ( Line )2
conn — 5 F l F
A Wiglger det

Assume the following reasonable values for the independent parameters:

A 514 nm

n 2.5

T, 5 mm

¢ 45 deg

D 50 mm
dneuron 30 um

Tinc 5 mW/cm?2
Tt 0.1 mW/cm2
W(1%) 6 mJ/cm2
F 500 mm
Faet 275 mm

Those assumptions yield N = 1.7x105 neurons, Nconn = 7x107 interconnections, and R = 1x107
interconnections processed per second (tg = 8 s). This is the weight updating rate. Readout of
the neural net would occur at video rates, e.g. the corresponding readout rate would be 7x107
interconnections divided by 30 ms, or 2x109 interconnections per second. Though the exposure
time g is relatively long, the massive parallelism resulting from the optical interconnections results
in a very high processing rate comparing favorably with that of electronic implementations.

The assumed values for the independent parameters are based on the current state of the art
for LCLVs and commercially available detectors without cooling or image intensification. The
value of W1g, = 6 mJ/cm? is a best-case measured value for BaTiO3 with an applied electric field of
10 kV/cm.5 The assumed values are impressive compared with the corresponding values of
electronic implementations, but they are limited by the subsampling of the SLM input plane.
Improved storage and throughput values would result if the need for subsampling to avoid
crosstalk could be avoided.

12
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. SECTION 3
STIMULATED PHOTOREFRACTIVE OPTICAL NEURAL NETWORK

3.1 SPONN CONCEPT

We have begun experimental verification of SPONN, a new and unique alternative method
for avoiding the Bragg ambiguity problem. Without sacrificing parallelism, it makes full use of the
SLM space-bandwidth product and provides much greater storage capacity than does the
subsampling method. The essence of our idea is to store each weight in a set of angularly and
spatially multiplexed gratings rather than in a single grating. The rejection of crosstalk may be
greatly increased by forcing a light beam to match the Bragg condition at each of a series of
spatially and angularly distributed gratings, as shown in Figure 5(b). An undesirable beam on the
degenerate cone of one grating (see Figure 3 above) is rejected by the remaining gratings. That
rejection allows the neurons to be arranged in arbitrary patterns on the SLM, increasing both
storage capacity and throughput as well as offering other benefits such as less stringent alignment
requirements and the use of the same crystal for both beam routing and storage of weights.
Though we use a larger fraction of the hologram space-bandwidth product to store each weight, the
increased storage space is more than offset by the improved utilization of the SLM input plane.

The physical process used to generate multiple-grating weight representation is phase
conjugation based on stimulated photorefractive scattering. Specifically, we propose the use of a
self- or mutually-pumped photorefractive PCM as both the storage element and the beam router in a
programmable optical neural network. Basically, self-pumped phase conjugation starts with an
image-bearing optical beam focused into a photorefractive crystal. Light scattered from crystal
inhomogeneities will write gratings by interfering with the incident beam. The gratings will in turn
scatter more light through a dynamic two-wave mixing interaction in which light energy is
transferred from the incident beam to other scattered beams.

If the relevant electro-optical coefficient is large enough and the interaction length long
enough, scattered light will be selectively amplified through the stimulated photorefractive gain
mechanism, which can be easily observed as beam fanning in crystals of BaTiO3. Through
reflections of the fanned light at crystal comers’ or through photorefractive backscattering8, the
stimulated process arranges gratings in volume distributions, which generate the phase-conjugate
or time-reversed image beam propagating backward along its original incident direction.

A mutually pumped PCM operates similarly except that iwo image béams are focused into the
crystal.? The light from one beam forms the phase conjugate of the other beam and vice versa,
though the two beams may be incoherent with respect to each other. Gratings produced by the

13
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Figure 5.  Use of multiple gratings to reduce crosstalk resulting from Bragg ambiguity.
(a) Single grating. (b) Multiple gratings.

interference of each beam with its own fanning light arrange themselves so as to form the phase
conjugates of the two incident beams. We will refer to self- and mutually-pumped PCMs
collectively as stimulated PCMs, orr SPCMs.

The key point for our SPONN architecture is that each pixel in the image incident on the
crystal forms gratings with, and hence is connected to, many other pixels. The degree of
connectivity can be adjusted by varying the position of the crystal relative to the input lens. For
example, if the crystal is in the back focal plane of the lens where the Fourier transform of the input
image is found, light from each pixel will overlap with light from all other pixels, establishing a
very large, fully interconnected physical system suitable for implementing fully interconnected
neural network models. On the other hand, if a slightly misfocused version of the input image is
incident on the crystal, the pixel connections will be more localized, allowing neighborhood neural
network operations such as lateral inhibition to be implemented.

Moreover, the distributed gratings form precisely the continuum of spatially and angularly
multiplexed gratings described above as a method for avoiding Bragg ambiguity in optical neural
networks. Simultaneously, the gratings produce an output that is the phase conjugate of the input,
simplifying the optical design and making the system tolerant of component imperfections and
variations. The following subsections will discuss the architecture and operation of the SPONN
system as well as some initial experimental results.

14
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3.2 SPONN ARCHITECTURE

SPONN systems using self- and mutually-pumped PCMs are diagramed in Figures 6 and 7,
respectively. Neurons are represented by pixels on the HRL-invented LCLV10 an SLM capable of
displaying 103 pixels at video frame times (33 ms). In Figure 7, the plane of neurons is divided
into sections, L1, L9, L3, L4, each of which represents a layer in the neural network. Light from
the optical neurons is directed into the self-pumped PCM. The conjugate return, consisting of the
input summed over the photorefractive weights, is directed by a beam splitter into a video detector
such as a CCD camera. The weighted sums are passed through nonlinear neuron-activation
functions electronically at video rates in the image processor, a frame grabber with nonlinear
lookup tables. The result can be either sent to the host computer as a final calculation or back to the
PCM through the LCLYV if the network is being iteratively trained.

Incremental weight changes follow an outer-product or Hebbian learning rule. Multilayer
neural networks are implemented by devoting separate areas of the LCLV to each layer. Large
training sets of exemplar patterns can be accessed by means of optical or magnetic disk image
storage technology. For example, commercially available disk technology will allow us to access
thousands of 105-pixel exemplar patterns for training with random access times of less than
200 ms per pattern.

The readout time of an optical neural network (operative mode) in SPONN is one video
frame time (33 ms). The current limiting factors are the respons ime of the LCLV and our use of
commercially available image processing components that are compatible with American video
engineering standards. The time required to modify the weights (training mode) depends on the
incident light intensity. However, for readily available continuous-wave (CW) argon laser powers
of 100 mW, the parallel weight modification time is approximately 100 ms for crystals of
commercially available BaTiO3 at room temperature. (Other HRL researchers have successfully
reduced the response time of BaTiO3 by two orders of magnitude through heating to 120°C.11) A
significant advantage of SPONN is that its optical parallelism makes the readout and modification
times independent of the neural network size. With room-temperature BaTiO3, the theoretical
weight-processing throughput would therefore be 101! interconnections per second for a network
of 105 neurons.

Phase conjugation enables the weight storage method to compensate for optical distortions
and simplify the optical design and alignment. The only critical alignment is between the output
and detected images, but that can be performed electronically by the image processor. The use of a
single photorefractive crystal is another beneficial feature of SPONN, especially for multilayer
neural network models. Since coherent interference in SPCMs occurs between an incident beam
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and light scattered from it, SPONN is less sensitive to vibration than other coherent interferometric
optical neural networks in which separate, externally generated beams propagating over large
distances must be held stable with respect to eash other to within a fraction of a wavelength.

Compact, rugged, laser-diode-pumped solid state lasers with large output powers are
becoming commercially available.12 They could replace the relatively bulky, water-cooled argon
laser used in our evaluation experiments. With such a laser, the SPONN system would occupy
less than one cubic foot and be able to implement parallel neural networks petentially consisting of
up to 1010 interconnections. SPONN also lends itself to modularity, as multiple units could be
connected to the host computer bus, as shown in Figure 8. Multiple neural networks could then
execute simultaneously on the SPONN modules, with cooperative data exchange coordinated by
the host computer. Such a system could be readily expanded by simply adding more SPONN
modules to the host bus.

C8929-06-05

HOST
COMPUTER

Figure 8.  Expandable SPONN architecture for parallel implementation of multiple nzural
network modules operating cooperatively.
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3.3 SPONN WEIGHT MODIFICATION

Learning, i.e., weight modification, in SPONN is accomplished by modifying the
interconnection weights between neurons through changing the gratings in the photorefractive
material. The material equations of Kukhtarev et al.!3 permit the derivation of a set of coupled
differential equations that describe grating formation in photorefractive materials, assuming that
two complex optical amplitudes Ap and A (of the pump and scattered beams, respectively)
interfere coherently to form the space-charge field E:14

0A, .
5;: = -l%- (k/ np) reff.PASE - %Ap

dA; . *
5;:. = -l-;— (k/ng) regr,sApE" - %As

B E_ Euhoh
A IVERYWE)

where xp and x; are coordinates along the directions of propagation of the pump and scattered
waves, respectively, np and ng are the reiractive indices in those directions, k is the optical wave
number, reff is the effective electro-optical coefficient, a is the optical absorpticn coefficient, 7 is
the space-charge field decay rate, and Eg is a function of the material constants and grating wave
number. The above equations cannot begin to model the full complexity of SPONN, where a great
number of beams scatter and interact with each other in order to form a connection weight.

A more realistic model would require the solution of a very large system of coupled
differential equations consisting of a set of equations similar to those above for each grating in the
crystal, all coupled together. The boundary conditions would dépend on details of crystal
geometry and inhomogeneities. Nevertheless, some understanding of the grating dynamics
relevant to weight formation can be obtained from the above equations by considering a single
isolated grating. For example, the above equations demonstrate that the amplitude diffraction
efficiency or connection weight increases with the grating space-charge field E. Also, at initial
stages of grating formation (E = 0), the rate of formation is proportional to the product of the
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writing beam amplitudes. That vélue corresponds to outer-product or hcbbian learning. The
steady-state value of E, obtained by setting the time derivative to zero, is also given by the product
of the steady-state pump and scattered beams.

One approach to learning in SPONN is to first initialize the connection pathways by turning
on all neurons. That establishes the gratings, which will then be modified during leaming. "ince
the time required to form gratings in a blank crystal is much longer than the grating adjustment
time, initialization also improves the leaming rate. The gratings are adjusted during outer-product
or Hebbian learning in SPONN by forming outer products between error signals and the input
signals in the previous layer. The host computer calculates error signals by determining the
difference between the actual output of SPONN and the desired output, as discussed in subsection
3.4. Leamning is conducted at a rate faster than the photorefractive response time, so the gratings
are never in equilibrium with the error signals. Since the photorefractive response time is intensity-
dependent, SPONN can be switched from the learning mode to the readout mode simply by
reducing the readout light intensity. Alternatively, hologram-fixing techniques can possibly be
used for nondestructive readout.

An important advantage of SPONN is its ability to implement bipolar weights that can be
selectively increased or decreased. That can be accomplished in several ways. For example,
shifting the phase of a neuron on the LCLYV in turn shifts the phase of the gratings written by that
neuron and selectively erases connections between it and other neurons. Another method is to use
two sets of gratings for each weight, one for positive weights and the other for negative weights.
The difference between the two weight contributions is calculated electronically by using two SLM
pixels per neuron.

3.4 EXPERIMENTAL VERIFICATION OF SPONN CONNECTIVITY

We have experimentally verified SPONN connectivity using the apparatus diagramed in
Figure 6. Sample SPONN output demonstrating connectivity is shown in Figure 9 for an
arbitrary abstract array of 1024 fully switched on neurons. Readout with a partial version of the
training image fills in the central blank arca, demonstrating that the outermost neurons have formed
connections with the central ones. Another example of connectivity is shown in Figure 10, which
presents complete SPONN outputs for complete and partial input images of a resolution chart.

Figure 11 illustrates the elimination of Bragg degeneracy. The steady-state phase-conjugate
output for a 1024-neuron input array on the LCLYV is shown in the middle photograph. When the
entire array was shifted half a period in any direction by moving the data in the image proce: or
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: Figure 9.  Experimental demonstration of SPOINN connectivity. (a) Input training pattern.
. (b) Partial input. (c) Complete SPONN output.
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Figure 10. Experimental demonstration of SPONN connectivity with images of resolution chart.
(a) SPONN output for training pattern input. b) SPONN output for partial input:
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Figure 11. Experimental demonstration of crosstalk reduction in SPONN. (a) Input training
pattern. (b) SPONN output for input a. (c) SPONN output for input a shifted by
half an array period.
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Experimental demonstration of crosstalk reduction in SPONN. (a) Input training
pattern. (b) SPONN output for input a. (c) SPONN output for input a shifted by

half an array period.
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frame memory, the output disappeared immediately, demonstrating crosstalk suppression without
subsampling of the SLM. The output reappeared when the array was shifted a full period.

Figure 12 illustrates selective grating weight erasure by shifting the phase of a single neuron
on the LCLV. The phase of the indicated optical neuron was shifted by ® without affecting its
amplitude by modifying the optical amplitude versus applied voltage transfer curve. This was done
by rotating the LCLV relative to the input poiarization which resulted in a non-monotonic transfer
curve. By adjusting the operating parameters two operating points with the same intensity but
phase shifted could be defined. Computer input via the crt which addresses the LCLV was then
used to select between the two operating points. A complementary grating in the crystal could then
be written which compensated the initial grating, implementing active coherent erasure of weights
by in effect adding a weight vector opposite in sign. In this manner bipolar weights can be
implemented in a photorefractive crystal. A disadvantage of this approach to implementing bipolar
weights is that although it requires only a single LCLV, gray scale operation is not possible since
independent control of both phase and amplitude is not possible over a continuous range of values.
This problem can be avoided by using a second LCLV operated in phase-only mode and imaging it
onto the amplitude/phase LCLV. The phase-only LCLV would then be used to both implement
bipolar weights and to compensate for phase distortions in the amplitude/phase LCLV. In this type
of coherent representation of bipolar weights it is necessary to measure the phase of the PCM
output interferometrically in order to determine the sign of the neuron outputs, which may result in
practical difficulties due to stability and alignment requirements. Spatial multiplexing of the
positive and negative parts of the weights using strictly positive connections can also be used to
represent bipolar weights. This approach has the advantages of requiring only a single LCLV and
not requiring coherent detection, but at the expense of using two pixels to represent each neuron
rather than one. However, the practical advantages may be worth the trade-off in neuron number.

We have investigated the effects of crystal position relative to the focusing lens on SPONN
connectivity. When the entrance face of the crystal is located in the back focal plane of the lens the
connectivity is global. As shown in Figure 13, each neuron is connected to almost all of the other
neurons in the input plane. This is perhaps not surprising since the region around the Fourier
plane contains the largest degree of spatial overlap between bearms oriéinating from neurons in the
input plane. In our initial experiments we were able to demonstrate a fanout of 256, When the
crystal was moved a few mm from the Fourier plane became more localized, with the range of
connections greater in the horizontal direction, as illusirated in Figure 14, This was probably due
to the character of the light distribution at the entrance face being closer to an image of the input
plane rather than the Fourier transform. The spatial overlap between neuron light beams was then
more dependent on scattering and fanning in the crystal due to photorefractive two-beam coupung
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Experimental demonstration of selective grating weight erasure in SPONN by phase-
shifting an optical neuron. (a) SPONN output for rectangular array input.
(b) SPONN output after phase shifting.

25

90TP9IST?




90TP9577

10-90-6206

-indut jo
surjd JOLINO,] WOIJ W M3 € parenis [RIsKI0 ‘KIATI0UUOD PIZI{edo] JO uonensuowdq "¢ 2103n]

1ndino 1NdNI Tvildvd

G TS UER IUR NN (RN BN W B S N A S BE an 3R
o ") i i IS I WSV LA VI PSS Y ST . TR SR F WL BRI LR PR WA T PRSI S TS ST I L RPN R T NI

il hatnid] Lagitiiaa e

27

ER T U IR P T LA TRt r W

e - L ot

ot




90TPIST7

.

effects, and also Fresnel reflections at the sides of the crystal. Since fanning occurs predominantly
in the horizontal direction in BaTiO3 in this geometry, it is not surprising that the connectivity has a
larger range in the horizontal direction. The ability to control the range of connectivity by adjusting
the position of the crystal will be useful for implementing neural network models with localized
connections, such as many early vision models.

A nonfundamental but possibly practical limitation to SPONN connectivity is noise.
Potential types and sources of noise include laser temporal noise, backscattered nonconjugate light
from the PCM, poor conjugation fidelity, and detector noise. Fixed spatial noise or poor SLM
contrast can be partially offset during the learning phase. We believe that the detector signal-to-
noise ratio (SNR) may be the practical limitation for neuron fan-in/fan-out. Commercially available
cooled CCD or charge-injection device (CID) detectors may be necessary to achieve the full
connectivity potential of SPONN.

3.5 MAPPING OF NEURAL NETWORK MODELS

Abstract neural network models must be somehow mapped onto the optical hardware.
Figure 15 illustrates the neural network topology for a self-pumped SPONN. Figure 15(a)
shows a back-propagation neural network with a single hidden layer. The neuron plane on the
SLM is divided into three regions, L1, L2, and L3, which correspond to the input, hidden, and
output layers of the neural network, respectively. The neuron activation levels are controlled by
the image processor (represented schematically in Figure 6). The grating connection pathways are
initialized by setting all neurons in all layers fully on until a steady-state phase-conjugate return is
observed on the video detector. Learning can then proceed.

First, as shown in Figure 15(b), an exemplar pattern is created by the image processor in
region L1 while inputs to regions L and L3 are turned off. The resultant light intensities that arise
from L; and are detected in region Ly are then stored in the image processor after electronic
thresholding by means of lookup tables. Region L is then switched off, the thresholded output of
L, is displayed on the SLM, and the resultant output intensity pattern in L3 is detected,
thresholded, and recorded in the image processor. An error pattern is formed electronically using
point-by-point subtraction in the image processor. (Because only one operation is required per
neuron, that step is not computationally burdensome.) The incremental weight adjustment for each
layer in the back-propagation procedure is given by the outer product of the error signal and the
© put pattern for that layer.!5 As discussed previously, the incrementai change in the diffraction
efficiency of a photorefractive grating is given by the outer product of the writing beams.
Therefore, the gratings in the PCM are adjusted and a single back-propagation pass is completed

28

i o . . ~ : |




™

T

TR T T v T T
. .
A

"

T

et e

Giiuor i o A L b L " — B K ‘
¥ = . .
\ 0 :

TV [Rre—

SINGLE
LAYER

TWO
LAYERS

SLM PLANE
0001000
Q000|000
000|000

Ly Ly
oNolNoRoRNoNeo)
O0|00|0O0
0000 (o]

Ly | L2 | b3
(a)

)

‘PCM L

Lo

Ly

(b)

S0TPIST?

8929-08-01R1

FORWARD
READOUT

TRAIN
WITH
ERROR
SIGNAL d;

Figure 15. Neural network topology for self-pumped SPONN, with with §; = B; - B{® formed
electrically. (a) Example of supervised learning. (b) Neural network model mapped
onto optical hardware.
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by displaying the error pattern in Ly, and the inpﬁt pattern in L1, then sequencing down through
the layers. Subsequently, the next exemplar is displayed in L and the procedure repeated. Since
learning is a nonequilibrium process, the exemplar integration time must be less than the
photorefractive time constant to prevent the "forgetting” of previous exemplar contributions.

Learning networks with localized lateral connections can also be realized by placing the PCM
in a slightly misfocused image plane of the SLM rather than in the Fourier plane, as was
demonstrated experimentally in the previous section. Such an arrangement would be useful for
vision models that use lateral inhibition.

Holographic gratings normally form symmetric connections. Many neural network models,
such as the well-known back-propagation model, assume symmetric weights. However, SPONN
can also accept asymmetric weights. As shown in Figure 16(a), asymmetric SPONN
interconnections in which the forward weight is different from the backward weight can be
implemented by spatially shifting the output plane relative to the input plane in the image processor.
That produces two separate connections between pairs of neurons, one for the forward direction
and one for the backward direction. Such asymmetric weights would be useful for neural network
models with dynamic feedback.

Second-order neural networks can also be implemented within the SPONN framework.
Higher-order neural networks use weight tensors wijk... to interconnect products of neuron
activation levels x;jx... to outputs yj:

yi=Q, Y, Wijk... XX+
ik

Such networks are useful because a single layer of such high order neurons can be used to solve
problems that are not linearly separable and are therefore much more powerful than first order
single layer networks such as the Perceptron. In addition, several types of invariance (such as
translation and rotation) can be built into them on an a priori basis.16 A limitation of high-order
networks is the large increase in the number of weights as the order is increased. The parallel
architecture of SPONN can be used to advantage in implementing a high-order neural network
optically. For example, a possible SPONN implem~ntation of a second order neural network is
illustrated in Figure 17. The products x;jxk formed from the neuron input layer activation levels are
formed optically by crossing two one-dimensional modulators to form a outer-product of the
activation vector x with itself. A third one-dimensional SLM is uscd i modulate input light with
the output neuron layer activation vector y. The second order weighted connections are formed by
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Figure 16. Asymmetric SPONN interconnections. (a) Single layer. (b) Multiple layers.
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focusing both the product matrix xTx and y into the PCM and detecting the conjugate signal. Since
separate weights are formed between each pair of input pixels, a weight wjjk is formed between
each product xjxk and each output neuron yj. In this way a second order weighted tensor sum
described by the above equation is formed.

3.6 RESULTS OF PERCEPTRON LEARNING EXPERIMENTS

During the 1988-1990 contract period, we perioimed experiments implementing the concepts
discussed above for optical learning in SPONN. Our first experiment was an attempted
implementation of the well-known Perceptron learning algorithm in a self-pumped SPONN, using
the apparatus diagramed in Figure 6. The Perceptron learning algorithm is a single-layer neural
network consisting of a set of input neurons connected to a single output neuron. It can classify
linearly separable input patterns. We chose it for our first attempt at implementation because it is
the simplest neural network capable of leaming and adaptation. The Perceptron learning algorithm
can be summarized as follows:

1. Initialize weights between input and output nodes to random values.
2. Enter pattern Aj™ and store resultant value B; of output node.

3. Form error signal §;™ = B; - BjM where BjM is the desired output.

4. Modify weights according to the outer product of the error signal and the input pattern:
Awj; =n0;MA;M, where 7 is the adjustable convergence parameter.

5. Increase m by one and return to step 2.

The loop is iterated until the error § is less than a specified small numerical value € for all training
patterns.

In our SPONN implementation, positive and negative weights were represented with two
pixels per node pair, one for the positive part and c.ie for the negative part of the weight. The two
pixel values were subtracted electronically to form the bipolar output. The training set of input
patterns consisted of the two images shown in Figure 18, a truck and a person. The neuron array
size was 64x64. The bright square in the central part of each image represents the desired state of
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l the output node. As each image was input into the PCM, the output node state was read by the
frame grabber and compared with the desired state. An error signal, used in displaying the
l weights, was then shown on the LCLV along with the input pattern. The frame time was adjusted
[ to be shorter than the photorefractive response time to prevent the photoretractive gratings from
l being in equilibrium with the input patterns.
- The result is evident in Figure 19, which shows the PCM optical output for the two input
f training patterns; the overlapping output patterns are due to the nonorthogonality of the input
' patterns. We are currently investigating the reasons for the similarity of the two outputs. Even
though the two input patterns have many pixels in common one would expect a greater difference
l between the output patterns. Figure 20 presents photographs of the scattered-light distributions in
the crystal taken from a vantage point above the crystal for the two input training patterns. The
l photographs indirectly show the general locations of photorefractive gratings. The two light
distributions are not identical, indicating that different gratings were formed for the two input
l patterns.
' Plots of the total error versus iteration number showed that, after about 300 iterations, the
error decreased to zero for several iterations, after which it would increase and then decrease 2gain.
That behavior was, we believe, due to unintended grating decay caused by the destructive readout
of the PCM gratings. A zero value for the error signal indicated that a solution had been found for
the weights. The weights, however, were subsequently modified by the readout process.

3.7 PERMANENT STORAGE OF WEIGHT VALJES

i
I Conventional hologram-fixing techniques in photorefractive crystals involve heating and/or
application of an external electric field in order to transfer photoinduced gratings to space-charge
gratings in optically insensitive levels.17 Initially, a hologram is written using conventional
l photorefraction. A m-phase-shifted space-charge pattern that compensates for the photorefractive
hologram is then induced by heating the crystal until ionic charge can move and cancel the space
f' charge arising from the trapped carriers. Reducing the temperature immobilizes the ions again.
'The trapped grating charges are then acti\ ated by flooding the crystal with light. Under an applied
l or photovoltaic field, the mobile charges drift and become spatially uniform, leaving only the
mirror-image hologram, which cannot be erased with optical radiation alone. The ionic hologram
] can be erased by reheating the crystal. In some cases, externally applied electric fields can be used
8 in place of or in combination with heating of the crystal to move the ionic charge. Researchers at
l HRL recently demonstrated hologram fixing in Bij2TiOp using these techniques.18
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Output patterns displayed during Perceptron learning. (a) For input truck image.

(b) For input person image.
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Figure 19. Output patterns displayed during Perceptron learning. (a) For input truck image.
(b) For input person image.

36




0TPI5T?

In ferroelectric materials with low coercive fields (on the order of 1 kV/cm) such as BaTiO3
and Sr1-xBaxNbyOg (SBN), an alternative technique has been demonstrated: electrical fixing by
domain reversal.1? (The coercive field is the critical applied electrical field required to reverse the
polarization of a ferroelectric crystal.) A spatial pattern of domains can be produced by applying a
field just below the coercive value and opposed to the orientation of the existing polarization. If
that is done after the hologram is recorded, the domain pattern can mirror the recorded hologram.
Holograms fixed using domain reversal cannot be erased optically, but application of a strong
poling field will restore the initial blank state in the crystal.

Storage times greater than an hour can be c.btained in BaTiO3 without fixing by reducing the
readout light intensity. Initial learning experiments would use dynamic refreshing of the weights
instead of fixing.
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SECTION 4
SUMMARY

In this final report for work performed in the period March 1988 to June 1990 we have
described our efforts toward optical implementations of neural network models. Under this effort
we have begun development of SPONN (Stimulated Photorefractive Optical Neural Network), a
hybrid optoelectronic system for programmable, adaptive, and fully parallel direct physical
implementations of neural network models. In SPONN, neurons are implemented as two-
dimensional arrays of pixels (105 to 106 neurons) on a spatial light modulator which are
interconnected optically in the third dimension. The nonlinear neuron activation functions are
implemented electronically. Individual connection weights are stored optically as a set of angularly
and spatially distributed gratings generated by stimulated processes in a photorefractive medium.
These dynamic processes also generate the phase conjugate of the input light distribution. This
approach greatly reduces crosstalk between neurons due to Bragg degeneracy and permits
significant increases in neuron and interconnection storage capacities and throughput over
subsampled optical neural network implementations. Potential throughput rates are as high as 1011
interconnections per second. Reduced system size and complexity resuit from the use of a single
photorefractive crystal for all optical tasks, including weight storage and beam routing by means of
phase conjugation. In addition, the phase conjugation compensates for distortions in the optical
components. The architecture is programmable and expandable, and it permits the implementation
of both fully and partially interconnected multilayer neural network learning models (e.g., the well
known back-propagation model), including laterally connected models. Both globally and locally
connected neural network models can be mapped onto the architecture. Higher order neural
network models in which connection weights are tensors rather than matrix elements can also be
implemented. We have described experimental results on SPONN connectivity, crosstalk
suppression, and weight modification using the Perceptron learning algorithm.
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An Optical Interconnection Method
for Neural Networks Using Self-
Pumped Phase Conjugate Mirrors

Y. Owechko and B. H. Soffer

Hughes Research Laboratories
3011 Malibu Canyon Rd
Malibu, CA 90265

Abstract

We describe an optical interconnection method based on self-pumped phase
conjugate mirrors in which each connection weight is distributed among many
angularly and spatially multiplexed gratings. This approach greatly reduces
crosstalk caused by the conical Bragg degeneracy associated with a single

grating and permits the entire input plane to be used. Applications to optical
neural networks are described.




Optics is often suggested as an alternative to electronic implementations of neural
network models because of its inherent parallelism and three-dimensional connectivity. The
global connectivity of optics is particularly appealing with regard to the communication
requirements of many neural network models in which each processing node or "neuron”
receives a weighted sum of the outputs of the neurons in the preceeding layer. Both spatial
light modulator (SLM) -based and holographic approaches for storing the weights have been
proposed. Holographic approaches based on photorefractive materials are attractive for the
implementation of large neural networks because of the large storage capacity! and the
capability for the adjustment of all inter-layer weights in parallel. To the best of our
knowledge, all previous holographic proposals have utilized one photorefractive grating to
store each connection weight.

A limitation of the single grating per weight approach is that even if the gratings are
formed in a thick medium with high Bragg selectivity, reading beams other than the pair that
originally wrote the grating can reconstruct an output beam. For a single grating, all incident
K vectors which lie on a cone defined by the Bragg angle will read out the grating. This
Bragg degeneracy cone results in crosstalk between neurons which is unacceptable in neural
network models. One approach which has been suggested to avoid this problem is to arrange
the pixels on the input and output planes in special nonredundant patterns such that unique
angles between pairs of writing and reading beams are defined.2 Extraneous connections are

still formed but they are made to areas of the input/output planes which are not allowed to

contribute to the final output. Although this approach solves the gratihg crosstalk problem, it -

also results in subsampling of the input SLMs and under-utilization of the available SLM
space-bandwidth product. Specifically, if the SLM is capable of displaying N2 neurons with
N4 potential interconnections, then the singie grating per weight approach can only
implement N 3/2 neurons and N3 weights, provided the storage capacity of the

photorefractive crystal is not exceeded. 2 The diffraction efficiency is also reduced because
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where Xp and xg are coordinates along the directions of propagation of Apand Ag, np and ng
are the refractive indices in those directions, k is the optical wavenumber, refr is the effective
electrooptic coefficient in the direction of propagation, t is the space-charge field decay rarc,
o is the absorption coefficient, and Eqc=Ep/(1+Ep/Eq) where Ep is the diffusion field and
Eq is the limiting space-charge field. It is clear from the above equations that the connection
weight between the two amplitudes A, and A increases with the space-charge field E. The

growth of E during the formation of the grating is in turn determined by the product ApAs* ,

which matches the Hebbian leaming rule common to many neural net models. Moreover,
the observed distributions of beams within a self-pumped PCM, which are determined by the
high coupling gain of BaTiO3, scattering centers, reflections from crystal faces, and the
geometry of the PCM configuration,* suggest that light beams from the entire input plane
mix in the crystal, resulting in the global interconnection of input pixels by a self-pumped
PCM, especially if the PCM is in the Fourier plane of the input spatial light modulator. 5:6
Since a beam from one pixel must diffract from a large set of spatially distributed gratings in
order to form the conjugate of a second pixel, the crosstalk should be low according to the
arguments presented previously.

We have performed a series of experiments to test these conjectures for the grating
selectivity and global connectivity of the SPONN (Stimulated Photorefractive-effect Optical
Neural Network) approach. In our first set of experiments, we tested the Bragg selectivity of
a self-pumped PCM operating in the internal loop geometry.” The BaTiO3 crystal was
obtained from Sanders Associates. The laser source was an argon ion laser operating at 514
nm which illuminated a fixed mask with a 9x9 square array of pixels consisting of 1 mm
diameter hioles. The ransmitted light was then focused into the crystal using a 100-mm focal
length lens. The crystal was located in the Fourier plane of the mask in order to maximize
the overlap between light beams from the pixels. The steady state conjugate return is shown

in Fig. 2a. The mask was then translated in a direction trar ,verse to the beam path by half of
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the hole period in a time span short compared to the photorefractive response time of 5 sec,
which was set by the total power incident into the crystal of 1 mw. The output plane
immediately after the translation is shown in Fig. 2b. The lack of any observable signal
despite the regular arrangement of pixels in the input plane confirms that very little crosstalk
due to the Bragg degeneracy effect is present in SPONN. The signal-to-noise ratio of the
CCD video camera was 100:1. Translating the array by another half period so that the
original positions of the holes were reproduced resulted in the immediate reconstruction of
the conjugate signal, verifying that the gratings had not been erased.

We then replaced the fixed mask with a Hughes Liquid Crystal Light Valve (LCLV)
in order to demonstrate global connectivity and associative recall. In this experiment the
initial input consisted of a 16x16 array of pixels, each of which was randomly assigned
values of 1 or 0. The steady state conjugate output is shown in Fig. 3a. We then switched to
an input consisting of a single pixel by translating an opaque mask with a single small
aperture in front of the LCLV. (By using an opaque mask rather than simply turning off the
other pixels we eliminated extraneous readout of the PCM by background light due to the
finite contrast ratio of the LCLV.) The single-pixel input is shown in Fig. 3b and the
resultant conjugate output of the entire input pattern is shown in Fig. 3c. Note that weights
were formed between the pixel and all of the other active pixels, demonstrating associative
recall and global connectivity with a fanout of 1:128. The degree of fanout we could
demonstrate was limited by the sensitivity of our CCD camera, not by the PCM. The fact
that each pixel occupied 1/ 1000 of the active area of the LCLV suggests that a fanout of
1:1000 could have been observed if a sufficiently sensitive camera had been available.

Neural network models can be implemented using the multiple-grating per weight
approach. The complex refleciance of pixels on the LCLV wouid represent neuron activation
levels. The conjugate return, consisting of the inputs to each neuron summed over the
photorefractive weights, is directed by a beam splitter into the CCD camera, the output of

which is digitized and thresholded at video rates using lookup tables in an image processor
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card in the host computer. In the case of feedforward supervised learning networks such as
backpropagation, error signals can be calculated by the host and displayed on the LCLV. As
discussed above, weight changes follow a Hebbian or outer-product learning rule. The
frame time of the LCLV would be adjusted to be shorter than the photorefractive response
time so that the gratings are not in equilibrium with the input light, since learning requires
that the output be dependent on the previous exposure history. Bipoiar weights and weight
changes can be implemented either by coherent detection and erasure or by employing
separate positive and negative weights. The bipolar outputs can be formed electronically by
subtracting the contributions of the two sets of weights. Muti-layer neural networks can be
programmed in the same system by spatially multiplexing the layers on the LCLV and
sequencing through adjacent layers.

In summary, we have discussed SPONN, a method for holographically
interconnecting optical neurons which distributes each connection weight among a set of
angularly and spatially multiplexed gratings generated in self- and 1autually-pumped phase
conjugate mirrors. We have presented experimental evidence of the reduced crosstalk,
optimum SLM space-bandwidth product utilization, and global connectivity of SPONN, and
discussed an architecture for implementation of multi-layered feedforward neural networks.

This work was supported in part by the Air Force Office of Scientific Research and
the Defense Advanced Research Projects Agency. We would like to thank C. Deanda for
skillful technical assistance and G. Valley and G. Dunning for helpful discussions.
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Figure Captions

Figure 1-A.  Ewald sphere momentum-space diagram for Bragg matching to two gratings in
series. Only a single input/output wavevector pair can lie on the two Bragg cones

and satisfy the Bragg conditions at both gratings simultaneously.

Figure 2-A.  Demonstration of elimination of Bragg degeneracy and crosstalk suppression.
(a) Steady state conjugate output. (b) Zero output observed after input array was
shifted by half a period. The conjugate returned immediately after the input array
was shifted by another half period.

Figure 3-A Demonstration of 1:128 fanout, global connectivity, and associative recall.
(a) Steady-state conjugate output for a 16x16 random binary pattern input.
(b) Partial input consisting of a single pixel. This represents only 1/1000 of the
active area of the LCLV. (c) Corresponding PCM output immediately after input

was switched to that shown in (b).
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met by conventional computer architectures which use a
small number of processing units, bus-oriented architec-
tures, and address-based random access memory.

A more suitable memory approach for neural network
models is associative memory. Associative memories have
long been a subject of active research in both optical and
electronic computing. As described above, this type of
memory is fundamentally different from conver::unal ran-
dom access memory in that no separate address exists for
each stored entity. Instead, the datum itself acts as a
pointer to either itself (homoassociation) or to other stored
data (heteroassociation). Data can flow through the sys-
tem, exciting chains of associations until a decision 1s
reached in a global and parallel manner. Associative
memories also have error correction properties in that a
complete undistorted set of data can be retrieved using a
distorted or partial version of input data. Error .rrection,
which stabilizes the flow of decision making through the
neural network, is implemented using nonlinearities and
feedback. Many associative memory mathematical models
have been published and simulated on serial electronic
computers [1}. However, it is inefficient to map such
highly-parallel and fine-grained models onto single-pro-
cessor serial computers. Ideally, the architecture of a
neural network computer should reflect the highly paral-
lel, associative, fine-grained, and nonlinear analog nature
of the neural network models. In particular, it would be
advantageous to devote a processing unit to each neuron
rather than multiplex neurons among processing units.
One approach to achieving such an architecture is to use
analog optical methods for parallel communication be-
tween a large number of processing units represented by
planes of pixels.

The good match between the parallelism and intercon-
nectivity of optics and the requirements of associative
memory paradigms has not gone unnoticed over the years.
Gabor, the inventor of holography, appreciated its asso-
ciative properties [9]. Some of the early expenments in
holographic associations were performed by Collier and
Pennington. These efforts, in which a hologram was
formed from two object wavefronts, were termed *‘ghost
image holography '° When the hologram was subse-
quently illuminated with part of wavefront 4, a complete
version of wavefront B was reconstructed. These holo-
graphic associative memories suffered from distortions,
poor signal-to-noise ratio (SNR), and low storage capac-
ity. Later, page-oriented holographic memories were de-
veloped which used mechanical or acoustooptic deflection
of reference beams to read out one of many spatially-sep-
arated subhoiograms. The seiection of a particular stored
page for readout was based on the correlation of the input
wavefront with the stored wavefronts.

The results of recent research in neural network models
has inspired workers in optics to add gain, nonlinear feed-
back, and competition 10 holography and create a new
class of optical associative memory. NHAM (nonlinear
holographic associative memory). Phase conjugation is
often used to implement these features of associative

memory. The performance of NHAM-type associative
memories is potentially superior to linear correlator ap-
proaches because, in addition to increased storage capac-
ity and discrimination, the nonlinearities in NHAM allow
it to make decisions and choose between a set of compet-
ing possibilities on the basis of ambiguous inputs. Most
importantly, its conceptual basis can be expanded to in-
clude optical implementations of neural network models.

In Section [I, after brniefly describing linear holographic
associative memories, [ will discuss some of the theoret-
ical aspects of a generic NHAM. In particular, I will de-
scribe the relationship of NHAM to centain higher oruer
correlation neural network models. Well-known examples
of first-order correlation neural network models are the
outer-product models of Anderson [10], Kohonen [5], and
Hopfield [11]. Grossberg's formulations [12] also contain
outer-product terms. Outer-product models are in fact
forms of the well-known Hebbian model of synaptic
learning. Higher order correlation models are general-
izations of outer-product models in which the couphing
matnx between neurons is a tensor. Section III is devoted
to descriptions of some representative experimental im-
plementations of NHAM’s.

In any review paper it is necessary to limit the topic of
discussion. In keeping with the theme of this special 1s-
sue, I will limit myself to nonlinear optical holographic
implementations of associative memory using phase con-
jugation or optical retrorefiection. I will not discuss ma-
trix-vector multiplier optical implementations of associ-
ative memory [13], nor will I discuss more general optical
neural network architectures capable of supervised or un-
supervised learning. Optical neural networks based on
matrix-vector multiplication use spatial light modulators
as two-dimensional masks to store the interconnection
weights between arrays of discrete emitters and detectors.
Multilayer optical neural network architectures [14] based
on storing weights as holographic gratings in photorefrac-
tive crystals have been proposed which are capatle of im-
plementing such neural network paradigms as backward
propagation and simulated annealing. For more informa-
tion on these subjects the reader should consult the ref-
erences. Finally, I wish to apologize in advance to any
workers whose relevant work has inadvertently not been
included here. -

II. OpTICAL ASSOCIATIVE MEMORIES

In this section I will discuss some theoretical issues re-
lated to storage capacity which are common to various
NHAM implementations. However, it will be instructive
first to briefly discuss earlier work in linear holographic
associative memories in order to establish basic princi-
ples. These principles will provide a framework for the
discussion of nonlinear holographic associative memories
which incorporate /eedback and gain using phase conju-
gate resonator configurations.

A. Linear Holographic Associative Memories
1) Ghost Image Holography and Page-Oriented Holo-
graphic Memories. The associative properties of holog-
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raphy have been recognized ever since the invention of
holography by Gabor [15]. Van Heerden (16] predicted
in 1963 that a hologram would produce a ‘‘ghost image"’
of a stored image upon illumination of the hologram with
a fragment of the original image. This was subsequently
confirmed by Stroke er al. [17). These early ghost image
experiments were characterized by poor image quality and
signal-to-noise ratio (SNR). The invention of off-axis hol-
ography by Leith and Upatnieks [18] greatly improved the
SNR by angularly separating the desired signal term from
the undesired noise due to self-interference among scat-
tered waves from the original image. Pennington and Col-
lier [19) demonstrated ghost image reconstructions using
this off-axis approach.

Ghost image holography can be mathematically de-
scribed as follows. Consider two complex wave ampli-
tudes a(x, y) and b(x, y) in a first plane (x, y). The two
wavefronts are allowed to propagate over a distance L to
a second plane (u, v) where a photosensitive holographic
plate is located. Assuming the transmission of the devel-
oped plate is linearly proportional to the incident light in-
tensity and diffraction within the hologram can be ne-
glected (thin hologram approximation), the amplitude
transmission of the plate will be proportional to

T(u, v) = lA(u. v) + B(u, v)l2

=|AP+|B} +Ba+Bd (1)
where 4 (u, v) and B(u, v) are the Fresnel-Kirchhoff
transforms of a(x, y) and b(x, y), respectively:

A(u, v) = emwi DAL H 2z y)
eI /AL g
where
a'(x,y) = a(x, y)e = AL

When the hologram is subsequently illuminated with
wavefront 4, the resultant output A (u, v) T(u, v) will
consist of several terms:

A(u, v) T(u, v) = |44 + |B[’A + AAB + BAA.
(2)

The first two terms represent on-axis noise terms. The
third term is an off-axis *‘twin wave'* which is not of in-
terest. The last term (which is angularly separated from
the other terms assuming a(x, y) and &(x, ¥) were spa-
tially separated in the (x, y) plane) represents the basis
for holographic associative memory. The analysis will be
simplified without loss of generality if we assume the
spherical phase terms in a’(x, y) and b’ (x, y) are can-
celed using lenses so that a’(x, y) = a(x, y). This cor-
responds to forming Fourier rather than Fresnel holo-
grams. If we Fourier transform the output of the hologram
with a lens and consider only the last term in (2), the re-

sult is
output = FT {BAA }

=b*(a o a) (3)
where * and o denote convolution and correlation, re-
spectively. The origin of the associative ghest image is
now clear. The input image a(x, y), is correlated with
itself and then convolved with the associated image b(x,
y). If the autocorrelation of a (x, y) is sharply peaked, the
convolution of a(x, y) with b(x, y) results in an output
closely resembling &(x, y). Thus upon input of a(x, y)
the wavefront b(x, y) is reconstructed, forming a heter-
oassociation. Since fragments of a(x, y) also form sharp
correlation peaks when correlated with a(x, y), a com-
plete version of b(x, y) is still formed when a partial ver-
sion of a(x, y) addresses the hologram, although the re-
construction is of reduced resolution. Leith and Upatnieks
demonstrated the marked improvement in image recon-
struction quality possible by using diffuse illumination.
This has the effect of increasing the spatial frequency con-
tent of a(x, y) and thereby sharpening its autocorrelation,
which improves the resolution of b(x, ).

Vander Lugt {20] introduced the use of off-axis holog-
raphy for matched filter recognition of objects by letting
b(x, y) be a delta function so that B(u, v) is a tilted plane
wave. If a lens is now placed behind the hologram the
correlation of the input image with the stored image ap-
pears in the back focal plane. If the input image matches
the stored image a bright spot appears in the back focal
plane or correlation plane. Moreover, the location of this
spot corresponds directly to the location of the matching
image in the input plane.

The Vander Lugt linear optical correlator has found
many applications in pattern recognition, signal process-
ing, and optical associative memories. One of the earliest
applications of the optical correlator for optical associa-
tive memories was in the page-oriented holographic as-
sociative miemory (HAM) [21] for digital computers. In
this application memory data were stored in a large num-
ber of spatially-multiplexed holograms. During recording
different data planes or ‘*pages’” were recorded in each
hologram sequentially by shifting a plane wave reference
from hologram to hologram. In the readout phase the light
from the input data page illuminated the entire set of hol-
ograms. An associative search of all of the stored data
could be performed simultaneously. A detector matrix de-
termined the location of the resultant correlation peak
which determined the location of the hologram containing
the matching data. This information was used to shift a
readout reference to the proper hologram for readout of
the associated data. The system could also be used for
heteroassociation by shifting the readout beam to a holo-
gram different from the matching one. Associations could
be made by processing the correlation plane with lookup
tables. ’

Such page-oriented associative holographic memories
are capable of large storage capacities but are limited 1n
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some respects. In particular, the systems are not shift in-
variant. They work best if the matching patterns always
appear in the same position. In addition. they handle mul-
tiple associations serially because of the mechanical scan-
ning of the readout beam. This lookup table approach
makes page-oriented HAM’s unsuitable for implementa-
tions of neural network model-inspired associative mem-
ories. In response to the need for highly-parallel architec-
tures for neural network models, a new class of HAM's
has been developed recently which is also based on the
optical correlator. These new devices also perform asso-
ciations using correlation as a measure of similarity.
However, unlike page-oriented HAM's, these nonlinear
holographic associative memories (NHAM's) use nonlin-
ear gain and feedback provided by phase conjugation to
implement competition between stored memories. This
competition is used to perform associations with error
correction and improved SNR on multiple inputs 1n par-
allel.

B. Nonlinear Holographic Associative Memories

1) General Description. Both ghost image holography
and Vander Lugt (matched filter) correlators are forms
of optical associative memories in that they return one
image when addressed with another. Ghost image holog-
raphy. however, suffers from poor storage capacity and
SNR due to distortions arising from the correlation-con-
volution operations described in the previous section.
Spatial multiplexing cannot be used to improve the SNR
if all stored images or *‘objects’" are to be recalled in the
same position, which results in the superposition of cross-
correlation noise in the output plane. This superposition
further reduces the SNR and the storage capacity. The
Vander Lugt correlator, on the other hand. has good SNR
due to its large processing gain. However, it is not very
useful as an associative memory because it maps input
objects into autocorrelation peaks in the output plane n-
stead of associating one optical image or object with an-
other.

The NHAM 15 an optical associative memory which
combines the fully-parallel image-to-image heteroasso-
ciative capabilities of ghost image holography with the
high SNR, processing gain. and storage capacity of
thresholded Vander Lugt correlators. In addition. nonlin-
earities allow an NHAM to select a particular stored
memory over all others on the basis of incomplete input
data. A schematic diagram of a representative NHAM
system is shown in Fig. |. The heart of the system is a
holugram in which Fourier transforms of vbjects u™ are
recorded sequentially using angularly multiplexed refer-
ence beams 4", as shown in Fig. |. For readout of the
NHAM. phase conjugate mirrors (PCM’s) or other means
of forming retroreflected time-reversed beams are posi-
tioned on both sides of the hologram, forming a phase
conjugate resonator. The hologram divides the resonator
into the object and reference legs. When a partial or dis-
torted version of object mo(a™") addresses the hologram
via the beamsplitter. a set of partially-reconstructed ref-
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Fig | Recording and readout of objects in reference-based NHAM

erence beams (b"”) is generated. Each reconstructed ref-
erence beam is convolved with the cotrelation of the input
object with the stored object associated with that partic-
ular reference beam. This part of the system is identical
to a matched filter Vander Lugt correlator. The distorted
reconstructed reference beams are phase conjugated by the
reference leg PCM and retrace their paths to the holo-
gram. These beams then reconstruct the complete stored
objects. The reconstructed objects are phase conjugated
by the object leg PCM and the process is iterated until the
system settles into a self-consistent solution or eigen-
mode, assuming the gain of the PCM"s is sufficient for
oscillation. In the absence of the hologram the phase con-
jugate resonator can support a continuum of different res-
onator modes. The eigenmodes of the NHAM resonator
are defined by the stored wavefronts in the hologram.

An important common feature of NHAM's is nonlin-
earity. Without it NHAM's could not ‘*choose’" a partic-
ular memory over all others and the output would be a
linear superposition of multiple recalled memories. If the
stored objects are considered to be vectors in state space,
then NHAM nonlinearities form regions of attraction
around the stored object vectors in a manner analogous to
neural network formulations of associative memory. The
nonlinear response and multiple stable states of the
NHAM allow selections between patterns to be made on
the basis of incomplete data since gain will exceed loss
only for the stored pattern with the largest overlap with
the input pattern. Nonlinearities also improve the SNR
and storage capacity over ghost image holography or lin-
ear matched filter correlators. The output association is
available 1n two torms depending on where the output 1s
coupled out. The reference side of the NHAM is essern-
tially a Vander Lugt correlator where a correlation peak
marks the location of the recognized object in the input
plane. In the object leg an undistorted version of the as-
sociated stored object is superimposed over the partial in-
put object. The output can be separated from the input
with a beamsplitter.

2) Storage Capacity. In this section I will discuss the
effects of nonlinearities in the reference leg on the SNR
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and storage capacity of NHAM’s. The resonator nature of
the NHAM is illustrated in the block diagram of Fig. 2.
Assuming thin Fourier transform holograms and using the
same approach as in (1)-(3). an iterative equation can be
written for the NHAM output:

am™ = F[§ <f{§ (@™, o a™) * b"'D o b *a”'}.
(4)

where a™ is the amplitude in the object leg after the nth
round-trip through the resonator, a™ are the objects stored
in the hologram, 5™ are the reference beams used in hol-
ographically recosding the objects, f( ) represents the
nonlinear reflectivity of the reference leg, and F( ) rep-
resents an output plane polnt nonlinearity. The input
“‘seed"’ ag® for the resonator is a partial or distorted ver-
sion of object m0, The output in the nth round-trip con-
sists of a double sum of cascaded correlations-convolu-
tions. The double sum over the object indexes m and m’
is due to the double-pass through the hologram. Assuming
the reference beams are angularly multiplexed plane
waves, the b™ functions are spatially displaced delta func-
tions:

b” = 6(x = x,,). (5)

(It should be noted that although all the calculations here
are being done in one dimension, these results are readily
extended to the two-dimensional images in NHAM asso-
ciative memories.) Substituting (5) in (4) results in the
following iterative equation for the object leg optical am-
plitude distribution after the first round-trip through the
resonator:

G5) = F{E DACT-x = 50 + )] * (9]
(6)

where
Cr(x) = aZ‘L © a”

Cr (x) is the correlation between the stored object m and
the resonator amplijtude distribution in the nth iteration. I
have assumed that the angular separation between refer-
ence beams is large enough to separate the correlation-

convolution terms in the reference leg, which permits me
to disregard cross terms due to the nonlinear reflectivity
f(). To facilitate the analysis and allow direct cou.pari-
sons with some outer-product type neural network models
of associative memory, I will assume objects consist of
N-dimensional vectors whose components assume values
of +1 or —1. (Objects consisting of analog vectors can
also be stored in NHAM’s. This binary representation is
used to simplify the analysis.) 1 will further assume that
the reference functions b™ are uniformly distributed and
equally spaced in the object plane. If these spacings are
wider than the widths of the objects, then by placing an
aperture over the output plane only reconstructions for
which m = m' in (6) are retained. This aperture prevents
ambiguities in the output plane which would ctherwise
occur if a thin hologram is used. The reference beam re-
constructs not only object mQ centered on the input object
but also all other stored objects. The aperture blocks these
other objects since they are displaced from object 0, but
at the cost of a reduced amount of shift invariance in the
field of view (FOV). As more objects are stored the
amount of unambiguous shift invariance is decreased pro-
portionally. The hologram can store only a single object
with shift invariance over the entire FOV. (Another lim-
itation on the shift invariance and storage capacity is that
the total space-bandwidth product of all shifted versions
of the stored objects cannot exceed the space-bandwidth
product of the hologram [22], [23].)

An estimate can be made of this FOV tradeoff between
the number of stored objects and degree of shift invari-
anc2. For example, assuming a Fourier transform lens fo-
cal length of F, a shift invariance of X implies an angular
spectrum range at the hologram of

¢ = X/F. (7)

If we further assume the hologram has good diffraction
efficiency for a range ¢ of reference-object beam angles,
then the number of objects that can be stored with shaft
invariance X in two dimensions is limited by FOV ambi-
guity to

M = (86/8Y. (8)

For parameter values of 7 = 500 mm, X = 10 mm, ¢ =
30°, and out-of-plane reference beams, the maximum
number of stored objects limited by FOV ambiguity is M
= 680. The FOV ambiguity issue is moot for volume hol-
ograms because Bragg selectivity prevents reconstruction
of beams angularly shifted in the same plane as the orig-
inal reference and object beams. (The selectivity is much
less, however, for out-of-plane shifts [24].)

Assuming an aperture which eliminates the ambiguous
reconstruction, only terms for which m = m’ are retained

in (6):

a(i) = F[§ 2 f(Ci-i(p)) a"(i - p)]. (9)
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The SNR for NHAM in the first iteration or at the end
of the first round-trip [before pointwise nonlinear trans-
formation in the object domain by F( )] can be calculated
from

|rlcseco]
SNR = :
\/; el + 2, Zlscson]

(10)

I will now make some assumptions concerning the statis-
tical properties of the stored objects in order to calculate
the C™(p) cross correlation coefficients. In paiticular, I
will assume the objects are random and not orthogonal-
ized so that the statistics can be described by a balanced
binary phase diffuser model [25}:

C(p) = N8(p) + V2(N = |p[)/3, ifm =m0
= v2(N - |p])/3, if m # m0
(11)

where N is the size of the stored object vectors. Assume
further that f(x), the point nonlinearity in the reference
or correlation domain, has the form f(x) = x". (The ef-
fects of arbitrary nonlinearities can then be estimated by
using a polynomial approximation and superposition.)
Substituting these expressions in (10) and performing the
summations over m and p results in the following expres-
sion for the SNR:

(n=13/2

Jﬁ—l ]

SNRyyam = 8(3/2)"*V(n + 1)/2

N> 1

(12)

where 8 is the fraction of a™ used as the input object and
M is the number of stored vectors. A heuristic estimate
for the storage capacity can be obtained by solving (12)
for M in terms of N. Assuming a minimum SNR required
for successful associative recall, M should be proportional
to N"~'. The proportionality constant is given by the min-
imum SNR required by the particular NHAM system for
successful convergence. Therefore, within limits set by
the available dynamic range, we can conclude that the
storage capacity of an NHAM can be increased by in-
creasing the nonlinearity in the correlation domain. A
similar analysis for the outer-product associative memory
results in

SNRou(cr-pmducx = lzﬁ - ll VN/M (13)

which, using the above SNR arguments, implies that M,
the number of stored objects, should be linearly propor-
tional to N. The storage capacity of an outer-product
model was reported by Hopfield as linear in N based on
empirical evidence for small N values [12]). Using a hy-
perplane counting argument, Abu-Mostafa and St. Jacques
have shown that the capacity of the outer-product model
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Fig. 3. Comparison of storage capacity of reference-based NHAM with
the outer-product model for nonlinearities in correlation domain of form
f(x) = x". Error-free input objects assumed. (After [31].)
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is bounded from above by N [26]. McEiiece et al. [27].
Bruce er al. [28], and Weisbuch and Fogelman (29} ap-
plied techniques from coding theory to the outer-product
model and showed that for random objects the maximum
asymptotic value of M for which all objects can be re-
covered exactly is N /(4 log N ) as N approaches infinity.
Their results also implied that if a specified nonzero error
rate in recall can be tolerated, the asymptotic storage ca-
pacity becomes linear in N. Gardner [30] extended these
results to a higher order generalization of the outer-prod-
uct model. Owechko et al. [31] performed computer sim-
ulations of the storage capacity of the outer-product and
NHAM models. The results are shown in Fig. 3 for the
number of vectors stored as a function of N for power law
nonlinearities with n = 2, 3, and 4. Each curve was aver-
aged over many runs using randomly selected vectors.
Because the input vectors did not contain any errors. the
simulations in effect tested the stored vectors for being
eigenvectors of the system.

Combining (12) and (13) and solving for the nonlin-
earity n = n,, which results in an NHAM storage capacity
equal to the outer-product model gives n,, approximately
equal to 2. This is verified in Fig. 3 as the slopes of the
M versus N curves plotted on logarithmic scales equal
n — 1 and the capacity for n = 2 is approximately equal
to the outer-product model. Although the above SNR ar-
guments and simulation results demonstrate the improve-
ment in storage capacit: caused by nonlinearities in the
correlation domain, the heuristic nature of the arguments
are evident in light of the asymptotic results of McEliece
et al. for the outer-product model capacity.

The improvement in storage capacity of an NHAM over
an outer-product associative memory is due to its close
analogy to certain higher order discriminant models. One
form of the nth order discriminant model can be defined
as a generalization of the outer-product associative mem-
ory model in which the W, weight matrix is a tensor of
ordern + 1:

Wi ooin = %: X;"X;':X;’:’v ) XZ: (14)

where the X' are one-dimensional stored vectors. The
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output is calculated by forming a tensor product:

X?‘"P‘ll = F[Z Zv et Z W, "’-/"X/“:pul
In

np.
non Ny

x|

m %m0

= F[(Xmo' xmpul)"x;no + Z (Xm‘ meul)"xzn].

(15)

The tensor generalization greatly increases the number
of degrees of freedorii which results in dramatically in-
creased storage capacities [32)-[34]. Comparing (15) and
(9) shows that a power law nonlinearity of degrec n in the
correlation plane of an NHAM is analogous to an stk or-
der discriminant function. A polynomial nonlinearity in
the correlation plane is analogous to a weighted sum of
higher order discriminant functions. They are not com-
pletely equivalent because inner products are used in the
outer product model as opposed to correlation in the
NHAM. This results in additional noise terms in the
NHAM arising from the wings of the correlation function.

Other sources of noise will also be present in practical
NHAM systems. These noise sources include dielectric
inhomogeneities in the holographic medium and detector
noise [35]. For photorefractive materials, erasure of pre-
viously recorded holograms during recording and subse-
quent readout may also limit the storage capacity [36],
although fixing techniques {37] may remove the later lim-
itation. These factors will reduce the storage capacity from
the theoretical diffraction-limited estimates of Van Heer-
den. Accurate estimates will be specific to the particular
system being considered.

I1I. IMPLEMENTATIONS
A. NHAM Categories

NHAM implementations can be categorized based on
the resonator geometry and the method used for generat-
ing the reference beams used in recording the holograms.
They can be further differentiated by the form and imple-
mentation of the nonlinearities. Most of the systems re-
ported to date have been based on a double PCM reso-
nator configuration similar to the one described above in
which a separate independent reference beam is associ-
ated with each object beam. The reference bears are gen-
erally plane waves, so that the reconstruction quality can
be controlled by adjusting the nonlinearities in the corre-
lation domain without loss of gray scale fidelity in the
object. (In general, most NHAM implementations to date
have not relied on the nonlinearity of the PCM’s, instead
various external nonlinear mechanisms have been used.)
Ring resonator geometries have also been proposed and
demonstrated which derive the reference beam from the
object beam. Although such systems lack some of the dis-
crimination obtainable using separate reference beams,
they do incorporate competition between stored modes
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using nonlinear gain saturation. Some specific implemen-
tations of these categories of NHAM, which vary mostly
in the nature of the feedback and thresholding mecha-
nisms, will now be described.

B. Multipass NHAM Configurations

1) Phase Conjugate Mirrors: Soffer et al. [38]. [39]
have demonstrated NHAM's which use thin thermoplastic
Fourier transform holograms as the storage medium. Ad-
vantages of this approach include shift-invariance and the
capability of programming heteroassociations by manip-
ulating the correlation plane. A disadvantage is the lack
of Bragg selectivity which results in low information stor-
age capacity compared to volume holograms.

This NHAM structure is identical to Fig. 1 and the the-
ory of the previous section is applicable without modifi-
cation. it experimental demonstrations a single itsration
norresonating configuration was used, as shown in Fig.
4. Two objects were recorded sequentially in the holo-
gram, each with its respective angularly-shifted plane
wave reference beam. The hologram was recorded at
514.5 nm using a Newport Corporation thermoplastic hol-
ographic camera. A partial version of one of the stored
objects was then used to address the hologram. A lens was
used to focus the correlation plane output of the hologram
into a PCM based on degenerate four-wave mixing
(DFWM) in BaTiO;. Typical parameters for PCM oper-
ation were wavelength 514.5 nm: forward and backward
pump fluxes 3.3 and 11.5 W /em®, respectively: internal
pump-probe angle 26°; and internal angle of grating &
vector to ¢ axis 13°. The output of the hologram acted as
a probe for the DFWM system, generating an amplified
phase conjugate of the correlation plane. The conjugated
backward propagating beam illuminated the hologram,
recreating a complete version of the stored object. Ex-
amples of stored objects, partial inputs, and reconstructed
outputs are shown in Figs. 5 and 6. The capability of a
reference based NHAM to handle gray scale objects is
demonstrated in one of the examples. In this series of ex-
periments a single pass nonresonator configuration was
used and the PCM was operated in the linear reflectivity
regime of DFWM. Thresholding, whether due to com-
petition between resonator modes caused by gain satura-
tion or to nonlinearities in the PCM reflectivity, was not
demonstrated in this system. The quality of the recon-
structions using what was basically a linear associative
memory was due to the coding of the objects using high
spatial frequency diffusers in contact with the objects. The
sharpened autocorrelation peaks of the diffusérs improved
the resolution of the objects.

2) Electronic Lookup Tables: In order to address the
issues of implementing controllable arbitrary nonlineari-
ties in the correlation plane and making diffusers unnec-
essary, increasing the optical gain in order to achieve res-
onator oscillation, and facilitating the interfacing of an
NHAM to an electronic host computer, Owechko [40] sug-
gested and implemented a hybrid optical-electronic
NHAM based on liquid crystal light valves (LCLV’s). A
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block diagram of the hybrid NHAM is shown in Fig. 7
and a detailed schematic in Fig. 8. The basic principles
of the hybrid NHAM are the same as described for the
all-optical NHAM. The implementation of the input and
feedback mechanisms are, however, quite different. In-
stead of using DFWM in BaTiO; to create true phase con-
jugates of the reconstructed reference and object beams.
a pseudoconjugation system using video detectors and
CRT-addressed LCLV's was used. Referring to Fig. 8,
the partial input image is focused onto an object loop video
detector and transfers the image to a CRT-addressed
LCLV. The optical output of the object loop LCLV ad-
dresses the thermoplastic hologram and reconstructs the
correlation plane which is focused on the reference loop
video detector. A one-to-one mapping is performed be-
tween the detector and the output of reference loop LCLV.,
which is positioned in the back focal plane of the corre-
lation lens. Thresholded correlation peaks on the refer-
ence loop LCLYV are converted into backward propagating
plane wave reference beams by the correlation lens. These
beams address the hologram, reconstructing recorded ob-
jects which are in turn focused on the object loop video
detector, closing the resonator loop. The combined gain
of the detector/CRT/LCLYV loops is more than sufficient
to overcome the optical losses, resulting in a feedback
system. The advantage of this approach is that general
nonlinear feedback functions can be easily programmed.
Between the reference loop video detector and the LCLV,
the correlation plane is nonlinearly processed in elec-
tronic form using digital lookup tables in a PC board level
image processor. The image processor can also be used




OWECKHO: NONLINEAR HOLOGRAPHIC ASSOCIATIVE MEMORIES

to program heteroassociations or multilayer optical neural
networks by shuffling subregions of the correlation plane
(32].

In preliminary experiments using a 20 mW HeNe laser
at 632.8 nm, a single object-reference pair was recorded
in the hologram. This demonstration showed that the hy-
brid resonator has at least one stable state which can be
reached only if the injected signal is sufficiently similar
to the stored image. As shown in Fig. 9, if more than 50
percent of the object were injected into the system, reso-
nance would occur and the system would latch onto the
stored object. The object would continue to circulate in
the resonator after removal of the input, demonstrating
bistability. Interruption of the circulating beam would re-
turn the resonator to its initial zero state. The hybrid
NHAM demonstrated robustness in the face of input dis-
tortions. For example, if the input object was rotated by
up to 10°, the output would still switch to the resonator
state consisting of a circulating undistorted version of the
stored object. The amount of tolerable distortion in-
creased as the sharpness of the nonlinearity in the corre-
lation plane was increased. The system would not latch
for different input objects, indicating the resonator was
recognizing the input object and not merely being
switched by stray scattered light.

3) Pinhole Array: Paek and Psaltis [41] have demon-
strated two different NHAM systems. In the first system,
a single-pass passive system shown in Fig. 10, a set of
spatially multiplexed objects are holographically re-
corded, all simultaneously using a single reference beam.
In other words, a single ‘‘macro object’’ is recorded in
the hologram which consists of many subregions, each
containing a single object. The macro object and the ho-
logram are located in the front and back focal planes of a
lens, which results in the formation of a Fourier transform
hologram. During readout an aperture equal in size and
shape to the subregions in the macro object is centered in
the input plane and input objects are placed inside it, as
shown in Fig. 11. (See discussion of FOV ambiguity in
the previous section.) This approach is equivalent to se-
quentially recording objects centered in the same aperture
but with angularly-shifted plane wave reference beams.
Both approaches divide the correlation plane into subre-
gions. During readout, the presence of a correlation peak
in a particular subregion is a unique label for which the
stored object is being recognized. The location of the cor-
relation within the subregion has a one-to-one correspon-
dence to the location of the object in the input aperture.

Thresholding was implemented using a pinhole array in
contact with a mirror placed in the back focai piane of a
correlation lens. The correlation lens, in turn, was posi-
tioned so that its front focal plane coincided with the Fou-
rier transform hologram. The correlation lens and mirror
acted as a ‘‘cat’s eye’’ pseudo-conjugator which retrore-
flected the reconstructed reference beams back to the ho-
logram for readout of the hologram. The appropriate
stored object was reconstructed centered on the input ap-
erture. Thepinhole array passed only the peaks of the cor-
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Fig. 10 Recording of multiple objects in a thin Fourier transform holo-
gram using spatial multiplexing of the objec.s. (After [41].)

Py Ly Py

NpUT] . P3
HOLOGRAPHIC \
ASSOCIATIVE ¢
QUTPUT MEMORY ] . =
’
-
.t ’
PINHOLE
ARRAY/MIRROR
Fig. 11 Schematic diagram of the pinhole array-mirror holographic as-

sociative memory system. (After (41].)

relations, suppressing the sidelobe noise and improving
the reconstruction quality. Such an approach to correla-
tion plane nonlinearities has the advantage of simplicity,
but it also destroys the natural shift invariance of the Fou-
rier transform hologram. Shifts of the input object within
the input aperture shifts the correlation peak as well. Since
the pinholes are spatially fixed, no object shifts can be
tolerated. (Paek and Psaltis have discussed approaches for
restoring shift invariance by eliminating the pinhole array
and using quadratic nonlinearities in the correlation plane
[e.g., n = 2 in (15)], but have not discussed specific im-
plementations.) Their expenimental results using the pin-
hole system are shown in Fig. 12. Four objects were
stored in the hologram. The reconstructed outputs and
their associated partial inputs are shown. The poor recon-
struction quality may have been due to the relatively large
size of the pinholes (350 microns). Because of the pas-
sive nawre of the pinhole-mirror pseudoconjugator and
the resultant lack of gain, a resonator architecture was not
implemented.
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(b)

(d)

Fig. 12. Pinhole array-mirror associative memory: pantial inputs (left) and
outputs (right). (After (41].)

In order to improve the reconstruction quality, in their
second system Paek and Psaltis separated the functions of
identification and reconstruction and used a separate hol-
ogram for each function. This second NHAM is shown in
Fig. 13. A thresholding spatial light modulator (micro-
channel spatial light modulator or MSLM) was also added
in the input path. Thresholding the input image [the F( )
function in (9)] can sharpen the correlation peak and im-
prove the reconstruction quality. The first Fourier trans-
form lens, hologram, correlation lens, and pinhole array
combination is identical to the thresholded Vander Lugt
cosrelator portion of their first system. However, now in-
stead of retroreflecting the correlation peak back toward
the first hologram, it is passed on to a second correlation
lens which converts it to a plane wave reference beam
which reads out a second hologram. The second hologram
is recorded in the same setup as the first using the same
objects and reference beam. The second hologram there-
fore reconstructs the associated object when addressed by
the thresholded reference beam. During recording each
hologram is optimized for its particular function. The rel-
ative intensities of the reference and object beams were
adjusted during recording of the first hologram to empha-
size high spatial frequencies in the object. This tended to
orthogonalize the objects and increase the autocorrelation
peak relative to its sidelobes and cross-correlations. The
second hologram, on the other hand, was recorded with
diffuse illumination to improve the display quality when
it is addressed by a restored plane wave reference beam.
The combination of object thresholding, orthogonaliza-
iion, and display optimization (which was made possible
by the separation of recognition and reconstruction func-
tions between the twn holograms; greatly improved the
reconstruction quality, as shown in Fig. 14.

4) Optical Fibers and Mirrors: An alternative, but
closely-related approach to thresholding the correlation
plane is the use of optical fibers coupled to mirrors to
retroreflect the central peak of the correlation function
back to the hologram. This approach was demonstrated
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THRESHOLD
OUTPUT  pevice

N
INPUT ]
= '
1 1
b4 P FIRST
2 HOLOGRAM

(a)

(b ©

)

Fig. 14. Pinhole array optical associative loop: (a) four stored memories;

reconstructed images from (b) the first hologram and (c) the second ho-
logram, and (d) partial input and (e) recalled output (After {41].)

by Yariv, Kwong, and Kyuma [42]. In their experiment,
shown in Fig. 15, two objects were recorded in a volume
holographic material using angularly-multiplexed refer-
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Fig. 15. Experimental arrangement of associative memwry using feedback
from optical fibers. (After [42].)

ence beams. Taking into account the volume nature of the
holographic medium and assuming that the induced index
variations are linearly proportional to the optical expo-
sure, the volume index variation can be written as

N
An o« Z. (EXE;, + c.c.) (16)

where E, are the recorded objects E,, are the angularly
multiplexed reference beams, and N is the total number
of recorded objects. When the hologram is addressed by
a partial input object E’, the diffracted field is given by

Eg(r) & 2 SVA’(r')A}"(r’) Ajp(r')e ik
J

- dx'dy' dz’ (17)

where the integral is peiformed over the volume of the
hologram and r = | r|, and r is 2 point in the observation
plane. The A’s are the slowly varying amplitudes of the
input object, stored objects, and reference beams. The
above quantity represents a sum of distorted versions of
the original plane wave reference beams. It is analogous
to (3), which was derived for a thin hologram. When these
beams are spatially filtered and retroreflected in the cor-
relation plane the result is a sum of plane-like waves prop-
agating back along the direction of E?" with complex field
amplitudes proportional to the overlap integral

J(r) = SVA’(r’) AP (r') Ao(r'ydx' dy' dz’. (18)

The above overiap integrai is anaiogous to the inner-prod-
uct formed in the thin hologram case when the correlation
function is sampled at its central peak. It is a measure of
the similarity of the input object to the stored objects. The
set of retroreflected plane wave references 15 given by

Enoq & ;E,’(‘,J,. (19)

If a nonlinearity is used to enhance the strongest J, and

completely suppress the weaker ones, and if this J; is al-
lowed to illuminate the hologram, the reconstructed out-
put will be given by

Emons(r) « JilAiole?(r) (20)

which is propartional to the conjugate of the stored object
A;(r). Therefore, with the proper nonlinearities in the
correlation domain, a volume hologram NHAM will dis-
play the one stored object that has the largest spatial over-
lap integral with the input object.

In the system shown in Fig. 15, Yariv, Kwong, and
Kyuma used optical fibers to snmple the peak in the cor-
relation plane and generate the J;. The opposite ends of
the fibers were butted against mirrors which retroreflected
the light back to the hologram. Since the fiber ends were
located in the back focal planes of correlation lenses. re-
constructed plane wave reference beams illuminated the
hologram. (This spatial filtering technique is conceptually
identical tc the pinhole-mirror technique used by Paek
and Psaltis.) Experimental results for storing two overlap-
ping, nonorthogonal objects using this system are illus-
trated in Fig. 16. In a modification of the system, the mir-
rors were replaced with a conjugating-thresholding
element. This ¢lement consisted of a bistable oscillation
[43] using a ring resonator passive phase conjugate mirror
(44]. The bistable oscillator utilizes mode competition to
selectively enhance the strongest mode at the expense of
weaker ones and retroreflect it back to the hologram. The
bistable oscillator was added to the NHAM, as shown in
Fig. 17, to further enhance the discrimination between
reconstructed reference beams. Experimental results using
this thresholding system are also shown in Fig. 16.

5) Pinhole Array and PCM: White, Aldrige, and
Lindsay [45] have constructed an NHAM which utilizes
a pinhole array and PCM combination for thresholding
the correlation plane. Their system is illustrated in Fig.
18. The correlation plane is sammpled using a fixed pinhole
array in a manner similar to that of Paek and Psaltis, but
the restored reference beam is retroreflected back along
its path to the hologram using a PCM rather than an or-
dinary mirror. The PCM consists of DFWM in BaTiO;
which results in the system having net optical gain. The
storage medium consisted of Fourier transform holograms
in dichromated gelatin. In their experiments, two objects
were sequentially recording using angularly-multiplexed
plane wave reference beams. Ouring recording the refer-
ence-object beam ratio was adjusted to enhance the high
spatial frequencies of the object, resulting in edge en-
hancemeni. This edge enhancement sharpened the auto-
correlation peaks and improved object discrimination.

Their experimental results are shown in Fig. 19. Each
object consisted of four geometric shapes. The only com-
mon element between the two objects was a circle in the
lower left quadrant. As shown in Fig. 19(a) and (b), if a
unique subset of an object addressed the NHAM, a com-
plete, albeit edge-enhanced, version of that object was re-
constructed. When the circle addressed the hologram [Fig.
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Fig. 16. Associative memory ustng feedback from optical fibers: (a) stored
image £,, (b) image E, diffracted off the hologram by a plane wave input
at plane P. (c) paruial input image E;. (d) retrieval of the stored nnage
E, by the partial image E| using the system of Fig. 15: (e) retrieval of
the stored image £, by the partial image £; using the system of Fig. 17:
(f) stored image £,. (g) image E, diffracted off the holograin by a plane
wave input at plare P, (h) partial input image E. 1) retrieval of the
stored image £, by the partial image £ using the system of Fig 15: (j)
retrieval of the stored image £, by the partial image E3 usi”  *hie system
of Fig. 17. (After {42}.)

19(c)}, the correlations with the two memories were equal
and a superposition of the two stored objects was recon-
structed 1 order to test the discrimination of the NHAM
the symu._try was broken by including additional subob-
jects te favor one of the memories (Fig. 20). This did tend
to enhance the memory with the larger correlation, but the
discrimination was not complete as a faint image of the
other memory can still be seen. The authors attributed this
to a lack of nonlinearity in the PCM, since the reflectivity
of DFWM is essentially linezr for low probe beam inten-
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Fig. 17 Associative memory using bistable oscillator based on passive ning
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Fig 18. Associative memory using pinhole array and phase conjugate mur-
ror based on four-wave mixing in BaTiO\. (After {45].)

sities (no pump depletion regime). No object was recon-
structed when the input consisted of a geometric shape not
present in either of the memories [Fig. 19(d)].

6) Nonlinear Etalons: A novel method of thresholding
the correlation plane in an NHAM was demonstrated by
Wang et al. [46]. The NHAM system was similar to the
single-pass systems described above with a dichromated
gelatin holographic storage element except that the
thresholding element was a ZnS bistable etalon. As shown
in Fig. 21, holding beams were used to bias the etalon
just below the threshold point where it would switch from
nontransmitting to transmitting. The etalon was posi-
tioned in the back focal plane of the correlation lens. If
the peak of the autocorrclation function was sufficient to
switch the etalon, the holding beam at that point would
be transmitted. Since the holding beams were aligned to
be counterpropagating with the reference beams. the
transmitted holding beam read out the hologram and re-
constructed the associated image. The need for a PCM
was therefore avoided. Both auto- and heteroassociation
could be implemented by directing the holding beams to
the same or different holograms. Associations of two
stored fingerprint images have been demonstrated. Wang
et al. have discussed various practical limitations of this
approach, ncluding the high power requirements and
nonuniformity of the ZnS etalon. Moreover, a PCM or
pseudoconjugator would have to be added on the object
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(d)

Fig. 19. Associauve recall (right) for single test inputs (left) using asso-
ciative memory system of Fig. 18: (a) Maltese cross: (b) diagonal cross:
(¢) circle: (d) hexagon (not in training set). (After [45]).)

side of the hologram in order to form a multipass reso-
nator.

C. Ring Resonator NHAM Configurations

An alternative type of optical associative memory is the
ring resonator NHAM described and demonstrated by An-
derson [47]. In the ring resonator NHAM, the reference
beam for recording the hologram is derived from the ob-
ject beam in a ring configuration, as shown in Fig. 22,
After the hologram is recorded, each stored pattern de-
fines an eigenmode of the resonator in the same manner
as for the linear resonator NHAM's described previously.
An association is made by injecting a portion of the orig-
inal pattern. A gain medium inside the resonator amplifies
the eigenmode with the largest overlap with the injected
field. The other eigenmodes are suppressed by a gain
competition mechanism.

Anderson and Saxena [48] have performed a perturba-

" @

1]
Fig. 20. Associative recall (right) for pairs of test inputs (left) using as-

sociative memory system of Fig. 18: (a) circle and Maltese cross. (b)
circle and diagonal cross. (After [45)).
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Fig. 21. Associative memory apparatus using nonlinear Zn$ ctalons. (After

(46].)

tive analysis of the evolution of the fields inside the ring
resonator NHAM. In their analysis the equation of motion
for eigenmode n is

.In = &,,1,, - 0nn1r21 - Z onm[nlm (21)
n#m

where 6, is a linear gain coefficient, 8, is a self-saturation
coefficient describing how much the presence of a mode
suppresses itself, and 6, is a cross-saturation coefficient
indicating to what degree one mode suppresses another.
The cross-saturation term is proportional to the mode 1n-
tensity overlap integral:

b | Juflvanfiar @)
gainvolume

where U, (r) 1s the amplitude distribution of mode n. For
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Fig 22 Holographic nng resonator memory (a) recording of hologram,
(b) recall by injected signal Gain is supplied by a pumped photorefrac-
tive medium. (After (47].)

the case of two stored eigenmodes, the gain competition
between modes is described by the ratio of cross- to self-
saturation:

61265
o 86 (23)
If C << I, then overlap between different modes is low,
competition is weak, and one mode does not influence the
other. If C >> 1, then competition is strong and one mode
will dominate over the other. Anderson and Saxena's the-
oretical results indicate that for a gain medium based on
photorefractive two-wave mixing in barium titanate, C can
be at most 1. The ring resonator NHAM is adjusted until
C is approximately 1 for all pairs of modes. The compe-
tition between modes can then be biased with an injected
signal. Anderson and Erie [49] have demonstrated this
concept using both simple plane waves and printed char-
acters as the recorded eigenmodes. An example of an im-
age stored in a ring resonator NHAM is shown in Fig. 23.
This approach is different from the previously-de-
scribed NHAM architectures in that the reference beam is
derived from the object beam for recording the hologram.
During readout no separate thresholding is performed on
the reconstructed reference beam. Instead a nonlinear gain
competition mechanism is relied on to favor one recon-
struction over other possible ones. This results in a sim-
pler design and automatic generation of reference beams
for recording, but at the cost of losing some of the flexi-
bility and storage capacity advantages of the plane wave
reference based NHAM described in Section II-B.
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(b)

Fig. 23. Image storage and recall in the ring resonator of Fig. 22: (a) out-
put of resonator during writing; (b) output of resonator during recall
without an injected signal. (After {49].)

IV. DiscussioN

Nonlinear holographic associative memories represent
a novel innovation on older linear holographic memories.
Nontinearities and feedback improve the reconstruction
quality compared to ghost image holography, but beyond
that they make possible new optical computation tools,
such as image vector quantization and programmable het-
eroassociations. These operations can be implemented on
large scale-bandwidth-product images with the parallel-
ism characteristic of optics. Potential applications include
multiple target identification and optical computing using
symbolic substitution [50]. Modified versions of these ar-
chitectures may have applications in optical neural net-
work computers [51]. The parallelism and large intercon-
nectivity make NHAM's especially attractive for this
application.

It is interesting that most of the experimental systems
reviewed did not utilize the nonlinearity of photorefrac-
tive PCM’s to improve storage capacity and perform er-
ror-correcting associations. In most cases the PCM's were
used as linear phase conjugating elements only and exter-
nal supplemental nonlinearities were added. The external
nonlinearities included pinhole arrays, optical fibers, bi-
stable ring resonators, nonlinear etalons, and electronic
lookup tables. Even when a thresholding PCM based on
a bistable ring resonator was used, it was supplemented
by spatial filtering using optical fibers. The use of external
nonlinearities is due to experimental difficulties in con-
trolling the nonlinear reflectivity of a PCM. For example,
a photorefractive PCM based on four-wave mixing using
external pumps can have a nonlinear reflectivity when op-
erated in the pump depletion regime [52). However, since
pump depietion is a nonlocal effect, the threshold level of
an incident beam is affected by other incident beams. (In
addition the reflectivity of a sclf-pumpced photorcfractive
PCM is a function of the angle of incidence.) This inter-
action between beams makes control of the optical non-
linearities difficult using only a photorefractive PCM,
making external nonlinearities a practical necessity for
consistent results. Pepper has discussed an alternative
method for thresholding and conjugating an optical wave-
front in an NHAM which uses a PCM for conjugation and
a liquid crystal light valve for controllable external
thresholding [53].
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The experimental systems discussed here demonstrate
the potential of NHAM's but they are also evidence of the
immature state of NHAM implementations to date. Be-
sides finding the optimum nonlinear mechanism, issues
remaining include demonstrating better image quality,
larger storage capacity, and programmability. Permanent
storage by fixing of holograms in photorefractive mate-
rials is an important issue, aithough much work has al-
ready been done in this area [54]-[56]. Interfaces to con-
ventional electronic host computers need to be developed
for these systems to become practical. In order to imple-
ment higher order tasks (such as rotation and scale in-
variant recognition of patterns) NHAM modules need to
be incorporated in general purpose optical neural network
architectures. Nevertheless, these first generation systems
have demonsirated several design principles which will
doubtless be incorporated in future optical associative
memory and neural network processors.
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Abstract
We describe an optoelectronic resonator associative memory system which u%t i zes
holographic interconnects. Image processing techniques are used to mpiement
nonlinearities and feedback. We show wusing numerical models that both power .aw and

sigmoidal nonlinearities improve tne storage capacity. Our experimental results lead .s to
be optimistic that this hybrid optical/electronic approach can be extended to acapt ve
neural network models,

1.0 Introduction

The self-organizing, adaptive features of neural network models developed by
biologists and mathematicians has in recent years piqued the interest of engineers wro a. .
interested in applying them to probiems in signal processing, pattern recogni:t . on, and

multi-variable optimization (1). Neural network models offer a data-driven unsuperv.sed
computational approach which s complementary to the algorithm-driven approac-es of
traditional information processing and artificial intelliigence. The fine granu.ar .y,
massive interconnectivity, and high degree of paralielism set neural network modeis apart
from traditionai electronic serial computing. These same features are the halimarxs of
optical computing architectures which have ied many workers to consider opt:cal

implementations of neural network models (1-12).

As reported in (2-4), we have constructed and demonstrated a resonator-based non..near
holographic associat.ve memory (NHAM) which can be described as an optical neural neiwsork.
A diagram of a generic NHAM is shown in Fig. 1. In this paper we describe a »~ybr:d
optical/electronic version of the associative memory in which the nonlinear, < es are
implemented electronically. We also discuss some initial numerical results from computer
simulations which show the effects of various nonlinearities on NHAM performance.

_ The all-optical NHAM reported in (2) consisted of a hologram situated in 2 orase
conjugate resonator cavity formed by two phase conjugate mirrors (PCMs). The PCMs were

formed by four wave mixing in BaTiOj. An intra-cavity thermopiastic hologram def.rec the
se ' f-consistent low-loss transverse modes of the resonator. These modes correspona to
images stored :n the hologram. Several images were recorded as superumposed Four er
transform holograms, each with a unique angularly shifted plane wave reference beam :wh.cn
corresponds to spatially separated delta functions 1n the input plane). If the hologram
was subsequent!y addressed by a partial or distored version of one of the stored images, a
set of distorted reference beams was reconstructed. The oscillation threshoid of tne NHAM
and the nonlinear reflectivity of the phase conjugate mirrors act to enhance the strongest
reconstructed reference relative to the weaker ones. The stored image with the largest
correlation with the input survives at the expense of the less correiated images A
method for adjusting the threshoid level of a PCM was reported in (13). These non. inear
mechanisms perform functions analogous to M"winner-take-ali" competitive neural networw«s.

The output of the associative memory after presentation with a distorted input s an
undistorted version of the input.

The storage capacity of such a nonlinear associative memory was shown :n (3) o be
superior to a2 linear holographic associative memory when a power law nonlinearity s .sed
in the correlation domain. These results are reviewed in Section 2 and extenced to
sigmoidal nonlinearities using numerical s.mulations. They indicate that the theoret ca,
storage capacity of an NHAM can be much greater than outer-product or simpie cor-~eiat.on
matrix formulations of associative memory because of the suyperior cross—talk suppress on
characteristics of the NHAM.

A hybrid ootical/electronic version of the all-optical NHAM is described in Sect o~ 3,
In the hybrid NHAM the BaTi03 based phase conjugate mirrors are replaced wish v 380
detectors and spatial Ilight modulators arranged in a pseudo-conjugating conf.guras o-.
Although the self-aligning feature of the all-optical phase conjugate resonator s .ost
with this change, other desirable features are gained. Greater gain is possible due to tne
combination of the electronic gain of the video detector and the optical gair of the
spatial |ight modulators (in this case Hughes Liquid Crystal Light Valves (LCLV)) Large
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gains are desirable since the diffraction efficiency of the hologram becomes less as more
gratings are rec>rded. The hologram diffraction efficiency is an optical loss whign must
be overcome in order to form a resonator. Using this hybrid approach, we have demonstrated
such an associative resonator. Another feature of the hybrid resonator associative memory
is that programmable digital video processing can be used to implement nonlinearit es arg

hetero-associative operations. The nonlinearities are point operations and can ve
implemented at video rates using fast lookup tables. In this hybrid approach the strengths
of optics: linear transformations, massive interconnectivity and paralieiism; ang the

strengths of electronics. point nonlinearities and programmability; are both used to
advantage.

The NHAM can be interpreted as a single layer optical neural network 1n whico &ne
interconnection weights are established permanentiy and non-adaptiveiy during recording of
the hologram. Feedback is used during readout but not in the recording of the weights. A
hybrid opto~electronic two-layer neural network is described in Section 4 in which tre
weights can be adjusted adaptively. This system is a straightforward extension of the
hybrid NHAM which uses photorefractive crystals as the holographic storage medium

2.0 NHAM Storage Capacity

The storage capacity of the NHAM is limited by such factors as the resolution, area,
and dynamic range of the holographic storage medium and the overall system gain. A more
fundamental limitation, however, which is independent of such material issues, s

correlation noise. Correlation noise is especially bothersome for an NHAM which, :n orcer
to maintain shift-invariance, is based on a thin hologram. The root cause is cross-taix
between non-orthogonal stored image vectors and it is similar to the storage iimitat on
mechanisms in the outer-product matrix type associative memories which have been descripea
by many workers. Fortunately, correlation noise can be greatly reduced in the reference-
based NHAM by utilizing the proper nonlinearities in the correlation domain. The effects

of such nonlinearities will be described in this section using examples from numer.ca!
simulations.

A block diagram of an NHAM from which we will derive 2an iterative equation for the
NHAM resonator is shown in Fig. 2. The operators
Hy.g and Hg., represent forward and backward paths through the hologram. The functions h()
and f() represent point nonlinearities in =~ne image or object domain and in the reference
or correlation domain, respectively., Basea on this diagram, an iterative equation can oe
written for the object distribution A, (x) after the n-th iteration around the loop basea on

N N N . . . 7N

the previous iteration distribution A _, (x):

- -~

An =G An—1 ]

where

- - (m) (m)
G [A 1=h{LFf(A ®A )=xA )}

(In this paper & and = denote correlation and convolution, respectiveiy.) We derived the
above equation by assuming a thin hologram and anguiarly shifted plane wave reference
beams, which correspond in the correlation domain to references B(™) which are spatialiy
shifted delta functions. The correlation domain nonlinearity f() operates on each term
separately because the terms are spatially separated due to the angular multiplexing of the
reference beams. The stored images A(™) are the eigenfunctions of the operator G, e.g.

Q [A(m) ] = A(m)

The correlation/convolution operations inherent in G serve to "recognize"” inputs £o the
systam s members of the stored set of images. These operations are aiso the source of
capacity-limiting correlation noise when non-orthogonal images are stored. The noniinear
functions f() and h() can be used to reduce the correlation noise.

In (3) we showed that when the correlation domain noniinearity f() is of the form

£ (x) =x"
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then the storage capacity in terms of the number, M, of images that can be stored with an
arbitrary "acceptable" level of c¢ross-talk is proportional to

M~ Nn-l

where N s the size of the stored image vectors This resuit was derived assuming ~3rgz™
non-orthogona: binary 'mage vectors ang % was verified using computer simyiat-ors. T-e
above resu't indicates that the <¢ross-ta.k amonrg stored vectors ¢an be ~eguced %2 a~
arbitrarily sma'i va ue by increasing the non!inearity of the correlation doma ' r f.~z% 2-

£0). o

However, in physica'ly realizable systems the degree to which this zan pve ach. e

ves 3
limited by the finite dynamic range of analog systems. Therefore, we rave pe~fz-~exz
computer simutations in which the f/) anog n() functions are s gmorda. { ncorpc-at -3
saturation) and noise is aaded to the updated image vector after each iteratior or ~=2.-:
trip through the NHAM resonator (s'muiating .imited NHAM aynamic range)

The dynamic behavior of the NHAM simulation is iliustratea i1n Figs. 3a-c using orase
diagrams. Ir the phase diagrams the horizontal coordinate represents the "distance" of <re
current state of the system from the target image vector. The vertical cooras-~ate
represents the distance in the next iteration. Distance D(k) i1n the k-th rteraticn s
defined here as 1-cos(8) where cos(8) s the direction cosine between the shtate =f <he
system and the target image vector. We use the direction cosine as a distance measu-e

rather than Hamming distance because it is a normaiized quantity which measures the
orientation of image vectors in state space and is independent of the vector norm. It s a
better measure of image similarity. The dynamic evolution of the system for a part cu'ar
initial input 1s represented by a series of points which head toward the orig:n when tre

system successfully converges to the ¢target image vector. An "equilibrium | . ne" wh.¢n
passes through the origin with unity slope represents the projection of eauilibrium po:~us
(possibly unstable) in state space onto the phase diagram, If the output of the NHAM
evolves to an eigenfunction of the operator G, the distance D(k) from the target vector
will be constant for succeeding iterations k, hence the system will be "stuck" on tre
equilibrium line. Recall of false or incorrect memory states is represented by sys%tem
trajectories which come to rest on the equilibrium line anywhere other tnan the 2r.g =

Trajectories which monotonically approach the target vector are confined be ow t-e
equtlibrium line.

In all of the following examples the Iimage vectors are 50 bit long binary vectors
whose entries are +~1, The sigmoidal nonlinearity in the correlation plane :n all cases
was

10
f (x) =

1 «exp [ 0.23 ( x - 44 ) ]

which set the correlation threshold level at 44 (the maximum possible.correlat-on peak
value was 50). In the phase diagram shown in Fig. 3a the foliowing nonlinearity was useo
in the object domain:

h ((x ) =

1 +exp [ 1.5 x ]

In all of the following examples the parameters for h() and f() were determined empir:cCaiiy
using numerical "experiments." No op*'m’' -3,.0ns were done. A total of 100 random £0 bt
long image vectors was generated and st. .d 'n the NHAM operator G. The input vecto~ was
generated by reversing nine of the bits in 2 randomly chosen stored vector. As ev.denced
by the eventua! path of the system toward the origin, the target vector was successfui.y
associated with the distorted input vector, In this case M=2N where M g tha number ¥
stored vectors and N is the vector size. Even with this number of stored vectors an error
in the input of 18% (nine bits in error) was successfully corrected. This capacity anc
error-correction ability is far in excess of outer-product matrix-based associative
memories where M0.1SN (14,15). Note that the system spent several iterations ciose to the
equilibrium |ine where progress %oward convergence on the target vector is siow, Tre
trajectory can be pushed away from the equilibrium line and faster convergence obta "ec oy
sharpening the object domain nonlinearity. Ian Fig. 3b the only change was 2 n() ~:%" 23
slightly sharper threshold:
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1
f (x) =
1 «+exp { 1.9 x ]
Note the faster convergence Finally, 1n Fig 3¢ noise was added after each iterat on
The magnitude of the ~oise was 10% of image vector magnitude. In this case the system

initially started to d serge until a random perturbation pushed <-e system :nto the oas:n
of attraction of the target vector

3.0 Hybrid NHAM

A block diagram of the hybrid associative memory is shown i1n Fig. 4 and a deta: ec¢
schematic 1n Fig. 5 As in the all-optical NHAM, thin Fourier transform holograms were
recorded in thermoplastic film Angular muitiplexing of the reference beams acts to
separate correlation noise from the desired signal, improving the efficacy of thresnoia ng
to remove the correlation noise and increase the signal to noise ratio of the reconstructec
image. The number of interconnection weights that can be stored in a thin hologram s much
less tham in a thick hologram. However, because of the shift-invariance of the Four.er
transform, the relatively small number of interconnectiuns are used very efficientiy %o
implement position independent pattern recognition, In this case the mapping for sn:ft-
invariance is built into the system by the physius of lenses and diffraction. In 2 true
neural network with adaptable weights the system would have to "learn" the reaqu.rec
mappings from examples supplied by its environment o~ anr external teacher.

Thresholding, feedback, and gain are provided electronicaliy by two sewvs of vidicon
detectors, cathode ray tubes (CRTs), and LCLVs. A pirtial or distorted .nput i1mage :s
focused onto an object loop vidicon detector which transfers the image to an LCLV v'3 2
CRT. The dashed 'ines in Fig. 5 indicate conjugate planes which are in one-to-one
correspondence with unity magnification The output from the object loop LTLV acdresses
the hologram and reconstructs distorted versions of the angularly muitipiexed piane wave
reference beams used in recording the stored images. Each of the originai de ta funcs 2n
references is convolved with the correlation of its respective associated objyject w tn Tne
input object. The distorted references are, therefore, simply the correlation functions of
the jnout object with the stored objects, each of which comes to 2 focus or 2 4~ 2.e
subregion of the correlation plane. The locations of these subregions .n the correiat orf
plane are determined by the angular shifts of the reference beams used during record . rg of
the hologram. The correlation functions are focused onto a reference leg vidicon detector
A one-to-one mapping is performed between points on the detector and points on the >utlputl
of the LCLV A pseudo-conjugate of the ncident reference beam .s generated by a':gn:ng

the LCLV in the back focal plane of the correlation lens. The activated pixeis on the
LCLV which represent the thresholded correlation function are iluminatea by 3 readout
beam The activated spot on the LCLV is converted into a back-propagating undistorted
reference beam by the correlation lens. This restored reference beam aadresses the
hologram and reconstructs its associated stored object as a real image which focuses on the
vidicon detector in the object loop of the resonator. Again, 2 one-to-one mapping :S mage

of the light inc dent on the vidicon to the readout side of the object LCLV. The restored
object image is then directed to the hologram, closing the resonator loop. The comb:'reg
gain of the vidicon/CRT/LCLY wunits are adjusted to overcome the optical losses of the
system, General nonlinear feedback functions can be easily implemenved. The correizt.on
functions are processed in electronic form using an .mage processor with 2 programmap e
digital look-up table before being sent to the reference leg LCLV.

In our 1nitial experiment, a single object/reference pair was recorded . n tre
hologram A'though this was obviously insufficient to demonstrate disc-.minat:on belween
objects, 't does serve to demostrate that the resonator has 2 stable state which can ve
reached only ¥ the injected signal s sufficiently similar to the stored image. The
results are shown .n Fig. 6 The input object was a partial version of the stored object,
an Air Force reso..tion chart. If more than approx:mately 50% of the object was .~ ,ecred
inte the syste~, -esorance was acvhieved and the system would iatch onto the storec -mage.
The system would stay latched after removal of the input, demonstrating bistad l:ity
Interrupting the ¢ rculating beam in the resonator would retura .t to 1%s initiar zerd
state If the nput object was rotated by up to 10°, the output would still switch to ts
other stable state Twe output would be an und:storted (unrotated) version of the stores
object. The system would not recognize the object 1f 1t was rotated more than 10°,
‘ndicating that the system was not mereiy be:ng brought above threshoid by noise.
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4.0 Extension of NHAM to Adaptive Neural Networks

The opto-electronic resonator associative memory can be extended o implement an
adaptable and reconfigurable multi-layer opticai neural network (ONN) with large storage
capacity and paralle! weight update capability. A block diagram of the system is shown in
Fig. 7. A two-dimensional neural activation pattern (object DA) addresses subhologram H1
and reconstructs another activation pattern (reference R). Reference R 1s noni . neariy
processed and then sh.fted so that it addresses a second subhologram H2 and reconstructs a
third pattern (object 0B) The two subholograms H1 and H2 are phys zaliy adjacent on the
same substrate and form the link weights between the input/output ayers, OA and 0B, and

the hidden layer, R The hologram substrate i1s a volume photorefractive crystal such as
LiNb0O3 in which | :nk we ghts can be continuousiy reinforced or inhibited. The opticai
pathways or | . nks are bidirectional so that |ight c¢an propagate not only in the direct.on
0A-R-08 but also 0B-R-0A. An error signal is back-propagated through the ONN w:th .ts

phase shifted by O or 7 so that grating which contribute to a large error signal can be
enhanced or inhibited. Thus this system can implement an optical version of the back-
propagation algor:thm, The three activation patterns and two subholograms form a two-
layer optical neural network. OA is the input activation pattern, R is a "hidden" layer,
and 0B is the output layer.

Although the number of interconnects that can be stored is proportional to the voiume

of the hologram, which scales as the linear dimension cubed; the number of poss:ble
interconnections between two NxN neural planes is N*, which scales as the linear dimension
to the fourth power. This reflects the fact that each grating wavevector can be read out
by a multiplicity of input/output wavevector pairs, which can result in unwanted cross-ta.k
between neurons (9). This is illustrated in Fig. 8 which shows that each grating wavevector
Kg can be read out by a set of input/output wavevector pairs which forms two cones “ouchi.ng
ag their apexes. In other words, all wavevector pairs Iying on the surfaces of the two

cones satisfy the Bragg condition for diffraction off the grating represented by Kgs which
can result in unwanted cross-talk between the Ky "weights",

Severa! approaches can be used to resolve this readout ambiguity, including sampiing
of the neuron plares using fractal grids (§). In our preferred approach, the object
wavevectors are free to vary in both 6 and ¢ (two-dimensional pixel arrays), but the
reference wavevectors are confined to a plane using cylindrical lenses (one-dimensional
line pixel arrays). This results in the volume filling of K space with grating wavevectors
and a total number of possible interconnects which scales as the |inear dimension cubed.
The degrees of freedom in the volume hologram are then matched to the number of requ:red
interconnects and cross-talk i5 automatically avoided. This arrangement also maps we to
many neural network models in which a2 number of neurons n one iayer are connected to
smaller or larger numbers of neurons in succeeding layers, In the hybrid NHAM this type of
partitioning also results in larger gain because one-dimensional pixel |ines rather than
points are used in the reference plane. The pixel lines intercept a greater fract.on of
the readout beam which results in brighter retroreflected reference beams. If N, is the
number of pixels that can be resolved along a line by an LCLV, then the number of
noninterfering interconnections between two planes s N13 using this partitioning method,
which is the same as the fracta! partitioning method.

A detailed drawing of the proposed optical back-propagation system is shown :n Fig. 9.
This system is virtually identical to the opto-eiectronic resonator associative memory
system descr bed in the previous section except for the substitution of a LiNbO3 volume
hologram for the thin tnermoplastic film hologram and the addition of a few lenses and an
SLM. The "top" and "bottom" activation patterns 0A and OB are located side by side in the
input plane. An incoherent-to-coherent conversion is performed in the object loop using 2
vidicon detector and LCLV. .

5.0 Summary

A hybrid opto-electronic nonlinear holographic associative memory (NHAM) was descr.bed
and theoretical and experimental results discussed. The NHAM consists of a hologram in an
opto-electronic cavity. Gain, feedback, and nonlinear processing of the reference beams are
provided by vidicon detectors, an image processor, and liquid crystal light valves.
Numerical simulations demonstrated the beneficial effacts of nonlinearities .n the
correlation domain on the storage capacity and object discrimination of NHAM. Operat.on of
the system as 2 resonator was experimentally demonstrated. The error-correction propert.es
were evident as the input image could be rotated over a range of 10° with no observabie
degradation in the associated output image.

A design for 3 hybrid opto-electronic resonator neural network architecture based on
volume holograms and capable of learning using error back~propagation was also discussed.
The design is a direct extens.on of the opto-electronic nonlinear holographic associative
memory. The use of spatially multiplexed subholograms in photorefractive crystals should
allow the implementation of a multi- layer optical neural network consisting of millions of
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neurons with potential processing rates of 1x10° interconnects per sec. This ootica
neural net can be constructed from standard components and would not requ.re tne
development, of new devices or the use of excessive optical power tevels. The use of v ceo
electronics in the feedback and back-propagation paths simpiifies interfacing to an outs.ce
computer host and allows the implementation of general nonlinear activation functiors In
this hybrid system, optics provides the massive connectivity and parallielism necessary ~ 2
neural network, while electronics provides the nonlinear processing. Both are therefore
used in the roles to which they are best suited. Such 2 system would find numeraus
applications in adaptive information processing and contro! systems.

This work was supported in part by the Air Force Office of Scientific Research. The
authors wish to thank C, DeAnda for expert technical! assistance.
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Holographic Associative Memories
Yuri Owechko

Hughes Research Laboratories
Malibu, California

Abscract

A Lyapunov or "energy" function based on Kosko’s BAM model
of associative memory is derived for optical associative memories based
on thin holograms in a noniinear cavity. The dynamic behavior is illus-
trated using computer simulations.

1. Introduction

Neural network implementations of associative memory have a wide range of potential
applications including content-addressable memories with error correction, pattern recognition,
and adaptive sensory-motor mappings for robotic control, among others. A large body of theo-
retical work on associative neural networks performed over the past twenty years is now begin-
ning to be exploited for such engineering applications. It is commonly felt that conventional
serial computers are not suitable for future neural network applications involving large numbers
of neurons because of the rapid scaling of connectivity and weight update rates with problem
size. Practical systems employing neural network algorithms will require special purpose paral-
lel computers onto which neural network models can be directly mapped.

As an alternative to conventional computers which lack the fine-grained parallelism and
connectivity required by neural network models, much work has recently been done on optical
and hybrid optical/electronic neural networks. The very high storage capacity, connectivity, and
parallelism of optics makes such systems attractive for this application. In particular, nonlinear
holographic associative memories (NHAM) have enjoyed a high degree of interest and activity
in recent years. These systems improve the associative properties of ghost image holography
pioneered by Gabor [1], Van Heerden [2], and Collier and Pennington [3] by placing the holo-
gram in an optical feedback cavity with nonlinear gain. The images stored in the hologram then
become the eigenmodes of the cavity and form stable limit points of the system.

In this paper I will interpret the dynamics of thin hologram NHAMs in terms of a neural
network model, specifically the Bidirectional Associative Memory (BAM) model of Kosko. I
will show that although NHAM systems are direct optical implementations of the BAM model,
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the limit points are not in general the intended stored memories unless the memory patterns in
one neural layer assume a particular form. This restriction is removed if volume holograms are
used together with some precautions to avoid crosstalk, although the natural shift invariance of
the thin hologram NHAM is then sacrificed. I will use computer simulations to illustrate NHAM
dynamic behavior.

2. NHAM architecture

The basic principle behind the associative properties of holograms is illustrated in Fig. 1
which depicts a highly idealized hologram formation process. During recording, two coherent
optical wavefronts, spatially modulated by transmittances a and b, are Fourier transformed and
interfere in a photosensitive medium, forming a fringe pattern IA+BI* where A and B are the
Fourier transforms of a and b, respectively. (Nonlinearities in the photoresponse of the medium
are ignored.) If after development the hologram is addressed with object o and the output is
Fourier transformed with a lens, then the output amplitude is given by

output =b*(a ® ) ¢Y)

where ® and * signify correlation and convolution, respectively. This result holds for a thin
hologram in which volume diffraction effects can be ignored. (Two other terms are also pro-
duced but they are spatially separated and can be ignored.) This result forms the basis for the
early work in ghost image holography: if a has the proper image statistics and o is sufficiently
similar to a, the correlation a®a will resemble a delta function and the output will closely
resemble b, forming an association between a and b. Unfortunately, for many images the auto-
correlation is not sufficiently sharp to prevent significant degradation of the output. Moreover,
when attempts are made to store multiple objects crosstalk noise further degrades the output
quality. Another problem is that such a linear system is incapable of choosing between compet-
ing outputs so that superimposed distorted inputs result in superim.posed distorted outputs. It is
also very difficult-to cascade such linear systems because of the buildup of distortions and noise
from stage to stage.

In order to circumvent the above problems we [4] and others [S] [6] [7] [8] [9] [10] [11]
proposed and demonstrated nonlinear holographic memories (NHAM) in which optical feedback
and nonlinear gain are used to choose between the stored memories. The physical form of the
retroreflection/nonlinearity mechanism used by various workers varies from all-optical to hybrid
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optical/electronic mechanisms. A diagram of one type of NHAM architecture is shown in Fig. 2.
Angularly shifted plane wave reference beams are used to record a set of objects a™ Each b™ is
therefore a shifted delta function. When the hologram is addressed by an input o, the output

M
B= El b™(a" ® ) ()
is passed through a nonlinearity f() and retroreflected back to the hologram, forming an output
M
o= Ela”'*(b"'®B) 3)

which is in turn passed through a separate nonlinearity F() and retroreflected back to the holo-
gram where the cycle repeats, forming an iterative dynamic system which converges to limit
points which are the eigenmodes of the optical cavity formed by the retroreflectors and the
hologram. It will be shown in Sec. 3 that if the b™ are shifted delta functions (corresponding to
angularly shifted plane wave reference beams) the limit points of the dynamic system correspond

! l to the stored a-b associated image pairs.

The architecture of Fig. 2 can be described in flow diagram format as a closed loop con-
sisting of a forward linear transformation, point nonlinearity, backward linear transformation,
and another point nonlinearity (Fig. 3). If we assume the stored memories are one-dimensional
vectors, the forward and backward linear transformations H,, and H,, can be described by matrix
representations of the linear operations listed in Eqs. (2) and (3), respectively. (The extension to
two-dimensional images is straightforward and does not add to the present discussion.) The
form of the matrix H,, can be determined from inspection and is illustrated in Fig. 4 for angu-
larly multiplexed plane wave reference beams. Itisa band M(2N-1)xN, matrix where each
row in band m consists of a shifted version of a™ and m is an index for the stored associative
memory vectors. N is the size of the memory vectors, N, is the length of the "window" in which
the input vector is imbedded (this allows for translational invariance), and M is the total number
of stored vectors. The elements of the forward transformation matrix H,, are given by

M T e R e ianger

M
h; = > a;'-.'-m, @
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The backward transformation matrix Hy, is similar in form. If the input vector is padded with
zeros to increase its length to N;=M(2N-1) then both matrices are square and H,, is equal to the
matrix transpose of H,,:

H,, =H) ®)

The above formulation of NHAM dynamics is formally equivalent to the bidirectional
associative memory (BAM) model described by Kosko. This interpretation of NHAM dynamics
is discussed further in the next section.

3. BAM interpretation of NHAM dynamics

Kosko’s BAM model[12] is illustrated in Fig. 5. Two fields of neurons F, and Fy charac-
terized by sigmoidal or hard thresholding activation functions are connected by a set of weights
h;. Patterns activating field F, are thresholded, weighted, and transmitted to Fg (bottom-up).
Those patterns are then in turn thresholded by Fy and transmitted back down to F, via the same
set of weights (top-down). This sequence then repeats in ping-pong fashion. Kosko has shown
that the function

E(o,B) =~(B'H - 8D — (o"H™ - 6})B (6)

always decreases as the system evolves. In the above expression (a.,) are column vectors
representing the patterns in (F,,Fy) and (6,",8,") are threshold levels. Since E is bounded from
below itis an "energy" or Lyapunov function and NHAM can be modeled as a nonlinear dissipa-
tive system. The minima of E correspond to stable limit points. The only necessary condition on
the connection matrix is that H (top-down) is the transpose of H (bottom-up). This corresponds
to bidirectional weights, e.g. the same weight connects neurons i and j in both directions. Kosko
showed that the limit points correspond to stored associative memory pairs a™ and b™ if the
connection weights are given by a sum of outer products:

M
h.= 3 a™b’ )

The BAM formalism can be applied directly to analyzing NHAM dynamics since BAM
dynamics, as evident from Fig. 3, is identical in form to that of the NHAM framework. The
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NHAM Lyapunov function is therefore given by the above expression for E if H is the matrix
illustrated in Fig. 4 which describes the linear transformation performed by the hologram. In
general, the NHAM limit points are not (a™,b™) because H is given by a combination of correla-
tion/convolution operations as opposed to the simple sum of outer products of the BAM. The
convolutions superimpose multiple blurred output terms which cannot be deblurred using simple
point nonlinearities and feedback. However, for the special case of angularly multiplexed plane
wave reference beams, the b vectors are spatially shifted delta functions which separate the
various correlation terms, allowing point nonlinearities to favor the strongest correlation peak.
This can be more easily seen if E is rewritten in the correlation/convolution format:

=1

M T M T
E(o, B) ={ Ela"‘*(b”' ®p) —-9,,) a-( Y b™@"®a) —9,,) B (8)

The above expression is locally minimized if (a,B) equal one of the stored associations and the
b™ are delta functions,

b" =8(x ~x,,)
oa=a™

p=b" ©)

since the cross-correlation noise is then separated out in both the o and  domains, converting
the above expression for E into a sum of two inner products which is minimized for

(,B)=(a™,b™). The iterative equation for the evolution of the o pattern can then be written as
[13]: -

o =F(§‘,la"‘*f(a”‘ ® oz,‘_,)) (10)

where it has been assumed that an aperture in the oc domain eliminates extraneous holographic
reconstructions. If the nonlinearity f() in the B domain is-faster than linear or sigmoidal the
correlation peak sidelobes will ter.d to be reduced on each iteration and o will coaverge to one of
the stored memories, assuming that the initial input was sufficiently similar to that stored
memory and the hologram is not overloaded.
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<
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.
]
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The results of a computer simulation of this process are shown in Fig. 6 in which a sigmoi-
dal nonlinearity was used. Figure 6a. is a plot of the § domain for five iterations through the
NHAM. The corresponding input or o domain is shown in Fig. 6b. The random stored vectors
were 25 pixels long and the input pattern was one of the four stored vectors with the first three
pixels reversed in sign. Note the error correction as the system evclves. The norm of the vector
difference between o and the stored vector is plotted in Fig. 7a, illustrating the convergence of
the NHAM to one of the stored states. The monotonically decreasing Lyapunov function is
plotted in Fig. 7b. The radius of attraction of the stored states can be estimated from Fig. 8
which shows the probability of convergence as a function of the Hamming distance of the input
vector from the nearest memory vector. The four curves are parameterized by the number of
stored vectors. The effects of too many errors in the input vector on NHAM performance are
evident in Fig. 9. Here the number of pixels per vector was reduced to eight, three of which were
in error in the input vector. In this case the NHAM converged to the "wrong" stored memory as
is evident from Fig. 9a. The Lyapunov function, of course, stiil decreased.

4. Summary

In this paper I have discussed a Lyapunov function for thin hologram NHAMSs. Such an
NHAM can be considered to be a BAM where patterns in one field (corresponding to the NHAM
B domain) are coded to prevent overlapping of the correlation terms. The use of angularly
multiplexed plane way ¢ reference beams implements this necessary coding. Nonlinearities can
then be used to sharpen the correlation peaks and undc the effects of the vlurring convolution
operations, allowing the NHAM to converge to one of the stored states. A single-pass feed-
forward NHAM can also be made equivalent to a Hamming neural network[14] by implementing
a winner-take-all competitive network in the B domain using excitatory and inhibitory local
interconnections to select the strongest correlation peak. Generalized BAMs can be implem-
ented in the NHAM framework if thick holograms are usec, as pointed out by Guest and TeKols-
te[15], although the natural shift-invariance of the thin hologram NHAM is then lust and special
techniques must be used to avoid crosstalk[16] [17]. The large storage capacity of a volume
hologram is, however, very attractive for neural network applicaiions.
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APPENDIX E

Self-Pumped Optical Neural Networks

Yuri Owechko
Hughes Research Laboratories

Malibu, California 90285

Optical neural network architectures are described which store each
connection weight in a continuum of spatially distributed photorefractive gratings.

This approach reduces cross-talk and fully utilizes the spatial light modulator.
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Self-Pumped Optical Neural Networks

Yuri Owechko
Hughes Research Laboratories
Malibu, California 90265

Neural network models for artificial intelligence offer an approach
fundamentally different from conventional symbolic approaches, but the merits of
the two paradigms cannot be fairly compared until neural network models with
large numbers of "neurons” are implemented. Despite the attractiveness of neural
networks for computing applications which ‘nvolve adaptation and learning, most
of the published demonstrations of neural network technology have involved
relatively small numbers of "neurons”. One reason for this is the poor match
between conventional electronic serial or coarse-grained multiple-processor
computers and the massive parallelism and communication requirements of neural
network models. The self-pumped optical neural network (SPONN) described here
is a fine-grained optical architecture which features massive parallelism and a
much greater degree of interconnectivity than bus-oriented or hypercube electronic
architectures. SPONN is potentially capable of implementing neural networks
consisting of 10°-10° neurons with 10°-10' interconnections. The mapping of
neural network models onto the architecture occurs naturally without the need for
multiplexing neurons or dealing with contention, -outing, and communication
bottleneck problems. This simplifies the programming involved compared to
electronic implementations.

Previous optical holographic implementations of neural network models used
a single grating in a photorefractive crystal to store a connection weight between
two neurons (each pixel in the input/output planes corresponds to a single
neuron). This approach relies on the Bragg condition for angularly selective
diffraction from a grating to avoid cross-talk between neurons. However, because
of the angular degeneracy of the Bragg condition, the neurons must be arranged
in special patterns in the input/output planes to fully eliminate cross-talk. This
results in sub-sampling of the spatial light modulators (SLMs) and incomplete
utilization of the SLMs if the single grating per weight approach is used.
Specifically, assuming the SLMs are capable of displaying NxN_pixels, the single
grating per weight method can store only N*? neurons and N® interconnections.’
I describe here an approach in which the Bragg degeneracy is broken by
distributing each interconnection weight among a continuum of angularly and
spatially distributed gratings. This eliminates cross-talk between neurons, making
sub-sampling of the input/output planes unnecessary and allowing full utilization
of the SLM space-bandwidth product. In other words, N° neurons can be fully
interconnected provided the interconnection medium has sufficient degrees of
freedom or space-bandwidth product to store the N* interconnection weights. By
forcing signal beams to match the Bragg condition at many spatially distributed
gratings, the signal-to-noise ratio should also be improved.

The continuum of gratings is generated by using a self-pumped phase
conjugate mirror (SP-PCM) in conjunction with a SLM, CCD detector, frame
grabber, and host computer. Several theories have been published for self-pumped
phase conjugation in BaTiO, crystals, including internal resonators based on four-




o

wave mixing aided by Fresnel reflections and stimulated photorefractive
backscattering. A common feature of these theories is that each pixel in the
input plane writes gratings with and pumps all other pixels to form the phase
conjugate wavefront. This results in a physical system which is massively
interconnected and parallel, and which is a natural medium for implementation of
neural network models. The distributed gratings in the crystal serve as the
interconnection mechanism while the frame grabber in conjunction with the host
computer implements programmable neuron activation functions. By spatially
segregating the input/output plane, multiple layer neural network models can be
implemented. This hybrid system combines the parallelism and interconnectivity
of optics with the programmability of electronics.

A diagram of an experimental system used to demonstrate these concepts is
shown in Fig. 1. The "object plane” corresponds to the plane of neurons
represented by pixels on an LCLV (liquid crystal light valve). Activation patterns
displayed on the LCLV are impressed on a light beam which is focused into the
SP-PCM. Connections between the pixels are formed and the phase conjugate
return is detected by a video camera. The return is processed on a point by
point basis by the frame grabber/image processor before being displayed again on
the LCLV. In neural network models such as backpropagation an error signal
would be formed electronically and displayed on the LCLV to adjust the weighis
between neurons. The error signals are formed on a point-by-point basis (local
operations) and so are not computational intensive.

An experimental demonstration of optical connectivity using the apparatus of
Fig. 1 is shown in Fig. 2. Fig. 2a shows the phase conjugate return for an
input consisting of a complete resolution pattern. The input was then switched
to the region enclosed by the dashed ellipse in Fig. 2b. The return consisted of
the complete resolution pattern, as shown in Fig. 2b, verifying that connection
weights were formed globally among all the pixels. Cross-talk suppression is
illustrated in Fig. 3. The input to the SP-PCM consisted of an array of dots on
a rectangular grid (Fig. 3a). The conjugate return is shown in Fig. 3b. When
the input was shifted even a slight amount, the return disappeared (Fig. 3c)
which verified that pixels do not have to be arranged in special patterns on the
SLM to avoid cross-talk. Finally, in Fig. 4 selective erasure of weights is
demonstrated. The central neuron was deactivated in Fig. 4b by shifting the
phase of that neuron on the LCLV. This shifts the phase of the gratings written
by that neuron and selectively erases connections between it and the cther
neurons, demonstrating that learning using bipolar error signals is nossible.

This work was supported in part by the Air Force Office of Scientific
Research. -

1. D. Psaltis, J. Yu, X. G. Gu, and H. Lee, "Optical Neural Nets Implemented
with Volume Holograms,” OSA Topical Meeting on Optical Computing, Incline
Village, Nevada, 1987, Paper TuA3-1.
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APPENDIX F

1990 International Topical Meeting on Optical Computing,
Kobe, Japan

Photorefractive Optical Neural Networks

Yuri Owechko
Hughes Research Laboratories
Malibu, California, USA 90265

Neural network models for pattern recognition, clustering, and optimization
offer an alternative approach compared to conventional statistical methods, but
without a unifying theory the performance of the two paradigms cannot be fairly
compared until neural network models with large numbers of "neurons” are
implemented in dedicated hardware. Despite the attractiveness of neural networks
for computing applications which involve adaptation and learning, most of the
published demonstrations of neural network technology have involved relatively
small numbers of "neurons”. One reason for this is the poor match between
conventional electronic serial or coarse-grained multiple-processor computers and
the massive parallelism and fine-grain communication requirements of neural
network models. Approaches currently being pursued for dedicated hardware
implementations include special purpose digital and analog integrated circuits as
well as hybrid optical/electronic architectures.

In my talk I will discuss holographic neural network architectures in which
the connection weights between neurons are implemented as gratings in a
photorefractive crystal. In particular I will discuss the self-pumped optical neural
network (SPONN), which is a fine-grained optical architecture which features
massive parallelism and a much greater degree of interconnectivity than bus-
oriented or hypercube electronic architectures. Connections between neurons are
implemented as sets of angularly and spatially multiplexed volume phase gratings.
SPONN is potentially capable of implementing neural networks consisting of
10°-10° neurons with 10°-10' interconnections. The mapping of neural network
models onto the architecture occurs naturally without the need for multiplexing
neurons or dealing with the contention, routing, and communication bottleneck
problems of electronic parallel computers. This simplifies the programming of the
optical system.

An alternative approach to optical holographic implementations of neural
network models utilizes a single grating in a photorefractive crystal to store each
connection weight between two neurons (each pixel in the input/output planes
corresponds to a single neuron).! This approach relies on the Bragg condition for
angularly selective diffraction from a single grating to avoid cross-talk between
neurons. However, because of the angular degeneracy of the Bragg condition, the
neurons must be arranged in special patcerns in the input/output planes to fully
eliminate cross-talk. This results in sub-sampling of the spatial light modulators
(SLMs) and incomplete utilization of the SLMs if the single grating per weight
approach is used. Specifically, assuming the SLMs are capable of displaying N°,
pixels, the single grating per weight method can store only N/ neurons and N°
interconnections. In my talk I will describe the SPONN approach in which the
Bragg degeneracy is broken by distributing each interconnection weight among a
continuurn of angularlv and spatially distributed gratings. This eliminates cross-
talk between neurons, making sub-sampling of the input/output planes unnecessary
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and allowing full utilization of the SLM space-bandwidth product. In other
words, N° neurons can be fully interconnected provided the interconnection
medium has sufficient degrees of freedom or space-bandwidth product to store the
N' interconnection weights. By forcing signal beams to match the Bragg
condition at many spatially distributed gratings. the signal-to-noise ratio should
also be improved.

The continuum of gratings is generated by using a self-pumped phase
conjugate mirror (SP-PCM) in conjunction with a SLM, CCD detector, frame
grabber, and host computer. Several theories have been published for self-pumped
phase conjugation in BaTiO, crystals, including internal resonators based on four-
wave mixing aided by Fresnel reflections and stimulated photorefractive
backscattering. A common feature of these theories is that each pixel in the
input plane writes gratings with and pumps all other pixels to form the phase
conjugate wavefront. This results in a physical system which is massively
interconnected and parallel, and which is a natural medium for implementation of
neural network models. The distributed gratings in the crystal serve as the
interconnection mechanism while the frame grabber in conjunction with the host
computer implements programmable neuron activation functions. By spatially
segregating the input/output plane, multiple layer neural network models can be
implemented. This hybrid system combines the parallelism and interconnectivity
of optics with the programmability of electronics.

A diagram of an experimental system used to demonstrate these concepts is
shown in Fig. 1. The "neuron plane” is an optical representation of the neuron
activity levels on a spatial light modulator, in our case a LCLV (liquid crystal
light valve). Activation patterns displayed on the LCLV are impressed on a light
beam which is focused into the SP-PCM. Connections between the pixels are
formed and the phase conjugate return is detected by a video camera. Th«
return is processed on a point by point basis by the frame grabber/image
processor before being displayed again on the LCLV. In neural network models
such as backpropagation an error signal would be formed electronically and
displayed on the LCLV to adjust the weights between neurons. The error signals
are formed.on a point-by-point basis (local operations) and so are not
computational intensive.

An experimental demonstration of optical connectivity using the apparatus of
Fig. 1 is shown in Fig. 2. Fig. 2a shows the phase conjugate return for an
input consisting of a complete resolution pattern. The input was then switched
to the region enclosed by the dashed ellipse in Fig. 2b. The return consisted of
the complete resolution pattern, as shown in Fig. 2b, verifying- that connection
weights were formed globally among all the pixels. Cross-talk suppression is
experimentally demonstrated in Fig. 3. The input to the SP-PCM consisted of an
array of dots on a rectangular grid (Fig. 3a). The conjugate return is shown in
Fig. 3b. When the input was shifted by half of the grid period, the return
disappeared (Fig. 3c) which verified that pixeis do not have to be arranged in
special patierns on the SLM to avcid cross-talk in the SPONN approach.
Finally, in Fig. 4 selective coherent erasure of weights is demonstrated. The
central neuron was deactivated in Fig. 4b by shifting the phase of that neuron on
the LCLV. This shifts the phase of the gratings written by that neuron and
selectively erases connections between it and the other neurons, demonstrating that
learning using bipolar error signals is possible.
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Issues which need to be addressed in the SPONN approach include the
partial erasure of old recordings by new ones and the volatility of the gratings
(gratings are partiaily erased by the readout process). Partial erasure can be
compensated by using an exposure schedule in which early recordings are made
with larger exposures than later ones.” Grating volatility may be possibly
eliminated by "fixing” the gratings using switching of ferroelectric domains in such
a way as to transfer the charge pattern in the crystal to the domain pattern,
which is permanent at room temperature.

This work was supported in part by the Air Force Office of Scientific
Research.
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Figure F-1. Schematic of self-pumped optical neural network apparatus.

Figure F-2 Demonstration of connectivity of self-pumped PCM.
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(b)

Figure-F-3. Demonsiration of cross-talk Figure F-4. Be?ig?g:;frg of selective
suppression in self-pumped cig .
optical neural network.




